2024屆北京市通州區(qū)市級名校畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
2024屆北京市通州區(qū)市級名校畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
2024屆北京市通州區(qū)市級名校畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
2024屆北京市通州區(qū)市級名校畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
2024屆北京市通州區(qū)市級名校畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆北京市通州區(qū)市級名校畢業(yè)升學考試模擬卷數(shù)學卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當﹣1<x<3時,y>0,其中正確的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤2.如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點G,若AE=3ED,DF=CF,則的值是A. B. C. D.3.射擊訓練中,甲、乙、丙、丁四人每人射擊10次,平均環(huán)數(shù)均為8.7環(huán),方差分別為,,,,則四人中成績最穩(wěn)定的是()A.甲 B.乙 C.丙 D.丁4.下列各式正確的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣20185.將一副三角板和一張對邊平行的紙條按如圖擺放,兩個三角板的一直角邊重合,含30°角的直角三角板的斜邊與紙條一邊重合,含45°角的三角板的一個頂點在紙條的另一邊上,則∠1的度數(shù)是()A.15° B.22.5° C.30° D.45°6.觀察下面“品”字形中各數(shù)之間的規(guī)律,根據(jù)觀察到的規(guī)律得出a的值為()A.23 B.75 C.77 D.1397.如圖,是反比例函數(shù)圖象,陰影部分表示它與橫縱坐標軸正半軸圍成的區(qū)域,在該區(qū)域內(nèi)不包括邊界的整數(shù)點個數(shù)是k,則拋物線向上平移k個單位后形成的圖象是A. B.C. D.8.在娛樂節(jié)目“墻來了!”中,參賽選手背靠水池,迎面沖來一堵泡沫墻,墻上有人物造型的空洞.選手需要按墻上的造型擺出相同的姿勢,才能穿墻而過,否則會被墻推入水池.類似地,有一塊幾何體恰好能以右圖中兩個不同形狀的“姿勢”分別穿過這兩個空洞,則該幾何體為()A. B. C. D.9.下圖是由八個相同的小正方體組合而成的幾何體,其左視圖是()A. B. C. D.10.如圖,在平面直角坐標系中,點A在x軸的正半軸上,點B的坐標為(0,4),將△ABO繞點B逆時針旋轉(zhuǎn)60°后得到△A'BO',若函數(shù)y=(x>0)的圖象經(jīng)過點O',則k的值為()A.2 B.4 C.4 D.811.如果a﹣b=5,那么代數(shù)式(﹣2)?的值是()A.﹣ B. C.﹣5 D.512.的相反數(shù)是A. B.2 C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,校園內(nèi)有一棵與地面垂直的樹,數(shù)學興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結(jié)果保留根號).14.已知圓錐的底面半徑為,母線長為,則它的側(cè)面展開圖的面積等于__________.15.關(guān)于的一元二次方程有兩個不相等的實數(shù)根,請你寫出一個滿足條件的值__________.16.與直線平行的直線可以是__________(寫出一個即可).17.四張背面完全相同的卡片上分別寫有0、、、、四個實數(shù),如果將卡片字面朝下隨意放在桌子上,任意取一張,那么抽到有理數(shù)的概率為___________.18.某商場對今年端午節(jié)這天銷售A、B、C三種品牌粽子的情況進行了統(tǒng)計,繪制了如圖1和圖2所示的統(tǒng)計圖,則B品牌粽子在圖2中所對應(yīng)的扇形的心角的度數(shù)是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點,于點,交于,求的值(3)如圖,中,,為邊的中點,于點,交于,若,,求.20.(6分)先化簡,再求值:,其中a=+1.21.(6分)先化簡,再求值:,其中x=﹣1.22.(8分)有甲、乙兩個不透明的布袋,甲袋中有兩個完全相同的小球,分別標有數(shù)字1和-1;乙袋中有三個完全相同的小球,分別標有數(shù)字-1、0和1.小麗先從甲袋中隨機取出一個小球,記錄下小球上的數(shù)字為x;再從乙袋中隨機取出一個小球,記錄下小球上的數(shù)字為y,設(shè)點P的坐標為(x,y).(1)請用表格或樹狀圖列出點P所有可能的坐標;(1)求點P在一次函數(shù)y=x+1圖象上的概率.23.(8分)某市為了解本地七年級學生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學生寒假參加社會實踐活動的天數(shù)(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)以上的信息,回答下列問題:(1)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是(選填:A、B、C、D、E);(3)若該市七年級約有2000名學生,請你估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有多少人?24.(10分)如圖,將平行四邊形ABCD紙片沿EF折疊,使點C與點A重合,點D落在點G處.(1)連接CF,求證:四邊形AECF是菱形;(2)若E為BC中點,BC=26,tan∠B=,求EF的長.25.(10分)小敏參加答題游戲,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,,,第二道單選題有4個選項,,,,這兩道題小敏都不會,不過小敏還有一個“求助”機會,使用“求助”可以去掉其中一道題的一個錯誤選項.假設(shè)第一道題的正確選項是,第二道題的正確選項是,解答下列問題:(1)如果小敏第一道題不使用“求助”,那么她答對第一道題的概率是________;(2)如果小敏將“求助”留在第二道題使用,用畫樹狀圖或列表的方法,求小敏順利通關(guān)的概率;(3)小敏選第________道題(選“一”或“二”)使用“求助”,順利通關(guān)的可能性更大.26.(12分)襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質(zhì)水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y元/千克,y關(guān)于x的函數(shù)解析式為且第12天的售價為32元/千克,第26天的售價為25元/千克.已知種植銷售藍莓的成木是18元/千克,每天的利潤是W元(利潤=銷售收入﹣成本).m=,n=;求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?27.(12分)某校師生到距學校20千米的公路旁植樹,甲班師生騎自行車先走,45分鐘后,乙班師生乘汽車出發(fā),結(jié)果兩班師生同時到達,已知汽車的速度是自行車速度的2.5倍,求兩種車的速度各是多少?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】

由拋物線的開口方向判斷a與2的關(guān)系,由拋物線與y軸的交點判斷c與2的關(guān)系,然后根據(jù)對稱軸判定b與2的關(guān)系以及2a+b=2;當x=﹣1時,y=a﹣b+c;然后由圖象確定當x取何值時,y>2.【題目詳解】①∵對稱軸在y軸右側(cè),∴a、b異號,∴ab<2,故正確;②∵對稱軸∴2a+b=2;故正確;③∵2a+b=2,∴b=﹣2a,∵當x=﹣1時,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故錯誤;④根據(jù)圖示知,當m=1時,有最大值;當m≠1時,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m為實數(shù)).故正確.⑤如圖,當﹣1<x<3時,y不只是大于2.故錯誤.故選A.【題目點撥】本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,關(guān)鍵是熟練掌握①二次項系數(shù)a決定拋物線的開口方向,當a>2時,拋物線向上開口;當a<2時,拋物線向下開口;②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>2),對稱軸在y軸左;當a與b異號時(即ab<2),對稱軸在y軸右.(簡稱:左同右異)③常數(shù)項c決定拋物線與y軸交點,拋物線與y軸交于(2,c).2、C【解題分析】

如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.設(shè)DE=a,則AE=3a,利用平行線分線段成比例定理解決問題即可.【題目詳解】如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.∵四邊形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四邊形ANFD是平行四邊形,∵∠D=90°,∴四邊形ANFD是矩形,∵AE=3DE,設(shè)DE=a,則AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故選C.【題目點撥】本題考查正方形的性質(zhì)、平行線分線段成比例定理、三角形中位線定理等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造平行線解決問題,學會利用參數(shù)解決問題,屬于中考??碱}型.3、D【解題分析】

根據(jù)方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好可得答案.【題目詳解】∵0.45<0.51<0.62,∴丁成績最穩(wěn)定,故選D.【題目點撥】此題主要考查了方差,關(guān)鍵是掌握方差越小,穩(wěn)定性越大.4、A【解題分析】

根據(jù)去括號法則、絕對值的性質(zhì)、零指數(shù)冪的計算法則及負整數(shù)指數(shù)冪的計算法則依次計算各項即可解答.【題目詳解】選項A,﹣(﹣2018)=2018,故選項A正確;選項B,|﹣2018|=2018,故選項B錯誤;選項C,20180=1,故選項C錯誤;選項D,2018﹣1=,故選項D錯誤.故選A.【題目點撥】本題去括號法則、絕對值的性質(zhì)、零指數(shù)冪的計算法則及負整數(shù)指數(shù)冪的計算法則,熟知去括號法則、絕對值的性質(zhì)、零指數(shù)冪及負整數(shù)指數(shù)冪的計算法則是解決問題的關(guān)鍵.5、A【解題分析】試題分析:如圖,過A點作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故選A.考點:平行線的性質(zhì).6、B【解題分析】

由圖可知:上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),上邊的數(shù)為連續(xù)的奇數(shù),左邊的數(shù)為21,22,23,…26,由此可得a,b.【題目詳解】∵上邊的數(shù)為連續(xù)的奇數(shù)1,3,5,7,9,11,左邊的數(shù)為21,22,23,…,∴b=26=1.∵上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù),∴a=11+1=2.故選B.【題目點撥】本題考查了數(shù)字變化規(guī)律,觀察出上邊的數(shù)與左邊的數(shù)的和正好等于右邊的數(shù)是解題的關(guān)鍵.7、A【解題分析】

依據(jù)反比例函數(shù)的圖象與性質(zhì),即可得到整數(shù)點個數(shù)是5個,進而得到拋物線向上平移5個單位后形成的圖象.【題目詳解】解:如圖,反比例函數(shù)圖象與坐標軸圍成的區(qū)域內(nèi)不包括邊界的整數(shù)點個數(shù)是5個,即,

拋物線向上平移5個單位后可得:,即,

形成的圖象是A選項.

故選A.【題目點撥】本題考查反比例函數(shù)圖象上點的坐標特征、反比例函數(shù)的圖象、二次函數(shù)的性質(zhì)與圖象,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的k的值,利用二次函數(shù)圖象的平移規(guī)律進行解答.8、C【解題分析】試題分析:通過圖示可知,要想通過圓,則可以是圓柱、圓錐、球,而能通過三角形的只能是圓錐,綜合可知只有圓錐符合條件.故選C9、B【解題分析】

解:找到從左面看所得到的圖形,從左面可看到從左往右三列小正方形的個數(shù)為:2,3,1.故選B.10、C【解題分析】

根據(jù)題意可以求得點O'的坐標,從而可以求得k的值.【題目詳解】∵點B的坐標為(0,4),

∴OB=4,

作O′C⊥OB于點C,

∵△ABO繞點B逆時針旋轉(zhuǎn)60°后得到△A'BO',

∴O′B=OB=4,

∴O′C=4×sin60°=2,BC=4×cos60°=2,

∴OC=2,

∴點O′的坐標為:(2,2),

∵函數(shù)y=(x>0)的圖象經(jīng)過點O',

∴2=,得k=4,

故選C.【題目點撥】本題考查了反比例函數(shù)圖象上點的坐標特征、坐標與圖形的變化,解題的關(guān)鍵是利用數(shù)形結(jié)合的思想和反比例函數(shù)的性質(zhì)解答.11、D【解題分析】【分析】先對括號內(nèi)的進行通分,進行分式的加減法運算,然后再進行分式的乘除法運算,最后把a-b=5整體代入進行求解即可.【題目詳解】(﹣2)?===a-b,當a-b=5時,原式=5,故選D.12、B【解題分析】

根據(jù)相反數(shù)的性質(zhì)可得結(jié)果.【題目詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.【題目點撥】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】設(shè)出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應(yīng)用,太陽光線下物體影子的長短不僅與物體有關(guān),而且與時間有關(guān),不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關(guān)鍵是根據(jù)三角函數(shù)的幾何意義得出各線段的比例關(guān)系,從而得出答案.14、【解題分析】解:它的側(cè)面展開圖的面積=?1π?4×6=14π(cm1).故答案為14πcm1.點睛:本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.15、1【解題分析】

先根據(jù)根的判別式求出c的取值范圍,然后在范圍內(nèi)隨便取一個值即可.【題目詳解】解得所以可以取故答案為:1.【題目點撥】本題主要考查根的判別式,掌握根的判別式與根個數(shù)的關(guān)系是解題的關(guān)鍵.16、y=-2x+5(答案不唯一)【解題分析】

根據(jù)兩條直線平行的條件:k相等,b不相等解答即可.【題目詳解】解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).故答案為y=2x+1.(提示:滿足的形式,且)【題目點撥】本題考查了兩條直線相交或平行問題.直線y=kx+b,(k≠0,且k,b為常數(shù)),當k相同,且b不相等,圖象平行;當k不同,且b相等,圖象相交;當k,b都相同時,兩條直線重合.17、【解題分析】

根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【題目詳解】∵在0.、、、這四個實數(shù)種,有理數(shù)有0.、、這3個,∴抽到有理數(shù)的概率為,故答案為.【題目點撥】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.18、120°【解題分析】

根據(jù)圖1中C品牌粽子1200個,在圖2中占50%,求出三種品牌粽子的總個數(shù),再求出B品牌粽子的個數(shù),從而計算出B品牌粽子占粽子總數(shù)的比例,從而求出B品牌粽子在圖2中所對應(yīng)的圓心角的度數(shù).【題目詳解】解:∵三種品牌的粽子總數(shù)為1200÷50%=2400個,又∵A、C品牌的粽子分別有400個、1200個,∴B品牌的粽子有2400-400-1200=800個,則B品牌粽子在圖2中所對應(yīng)的圓心角的度數(shù)為360×.故答案為120°.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。⒔獯痤}:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)相等,理由見解析;(2)2;(3).【解題分析】

(1)先判斷出AB=AD,再利用同角的余角相等,判斷出∠ABF=∠DAE,進而得出△ABF≌△DAE,即可得出結(jié)論;

(2)構(gòu)造出正方形,同(1)的方法得出△ABD≌△CBG,進而得出CG=AB,再判斷出△AFB∽△CFG,即可得出結(jié)論;

(3)先構(gòu)造出矩形,同(1)的方法得,∠BAD=∠CBP,進而判斷出△ABD∽△BCP,即可求出CP,再同(2)的方法判斷出△CFP∽△AFB,建立方程即可得出結(jié)論.【題目詳解】解:(1)BF=AE,理由:

∵四邊形ABCD是正方形,

∴AB=AD,∠BAD=∠D=90°,

∴∠BAE+∠DAE=90°,

∵AE⊥BF,

∴∠BAE+∠ABF=90°,

∴∠ABF=∠DAE,

在△ABF和△DAE中,∴△ABF≌△DAE,

∴BF=AE,(2)如圖2,

過點A作AM∥BC,過點C作CM∥AB,兩線相交于M,延長BF交CM于G,

∴四邊形ABCM是平行四邊形,

∵∠ABC=90°,

∴?ABCM是矩形,

∵AB=BC,

∴矩形ABCM是正方形,

∴AB=BC=CM,

同(1)的方法得,△ABD≌△BCG,

∴CG=BD,

∵點D是BC中點,

∴BD=BC=CM,

∴CG=CM=AB,

∵AB∥CM,

∴△AFB∽△CFG,∴(3)如圖3,在Rt△ABC中,AB=3,BC=4,

∴AC=5,

∵點D是BC中點,

∴BD=BC=2,

過點A作AN∥BC,過點C作CN∥AB,兩線相交于N,延長BF交CN于P,

∴四邊形ABCN是平行四邊形,

∵∠ABC=90°,∴?ABCN是矩形,

同(1)的方法得,∠BAD=∠CBP,

∵∠ABD=∠BCP=90°,

∴△ABD∽△BCP,∴∴∴CP=同(2)的方法,△CFP∽△AFB,∴∴∴CF=.【題目點撥】本題是四邊形綜合題,主要考查了正方形的性質(zhì)和判定,平行四邊形的判定,矩形的判定和性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),構(gòu)造出(1)題的圖形,是解本題的關(guān)鍵.20、【解題分析】

原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結(jié)果,把a的值代入計算即可求出值.【題目詳解】原式==,當a=+1時,原式=.【題目點撥】本題考查了分式的化簡求值,熟練掌握分式混合運算的運算順序以及運算法則是解題的關(guān)鍵.21、.【解題分析】試題分析:試題解析:原式===當x=時,原式=.考點:分式的化簡求值.22、(1)見解析;(1)13【解題分析】試題分析:(1)畫出樹狀圖(或列表),根據(jù)樹狀圖(或表格)列出點P所有可能的坐標即可;(1)根據(jù)(1)的所有結(jié)果,計算出這些結(jié)果中點P在一次函數(shù)圖像上的個數(shù),即可求得點P在一次函數(shù)圖像上的概率.試題解析:(1)畫樹狀圖:或列表如下:∴點P所有可能的坐標為(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).∵只有(1,1)與(-1,-1)這兩個點在一次函數(shù)圖像上,∴P(點P在一次函數(shù)圖像上)=.考點:用(樹狀圖或列表法)求概率.23、(1)見解析;(2)A;(3)800人.【解題分析】

(1)用A組人數(shù)除以它所占的百分比求出樣本容量,利用360°乘以對應(yīng)的百分比即可求得扇形圓心角的度數(shù),再求得時間是8天的人數(shù),從而補全扇形統(tǒng)計圖和條形統(tǒng)計圖;(2)根據(jù)眾數(shù)的定義即可求解;(3)利用總?cè)藬?shù)2000乘以對應(yīng)的百分比即可求解.【題目詳解】解:(1)∵被調(diào)查的學生人數(shù)為24÷40%=60人,∴D類別人數(shù)為60﹣(24+12+15+3)=6人,則D類別的百分比為×100%=10%,補全圖形如下:(2)所抽查學生參加社會實踐活動天數(shù)的眾數(shù)是A,故答案為:A;(3)估計參加社會實踐“活動天數(shù)不少于7天”的學生大約有2000×(25%+10%+5%)=800人.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大小.24、(1)證明見解析;(2)EF=1.【解題分析】

(1)如圖1,利用折疊性質(zhì)得EA=EC,∠1=∠2,再證明∠1=∠3得到AE=AF,則可判斷四邊形AECF為平行四邊形,從而得到四邊形AECF為菱形;(2)作EH⊥AB于H,如圖,利用四邊形AECF為菱形得到AE=AF=CE=13,則判斷四邊形ABEF為平行四邊形得到EF=AB,根據(jù)等腰三角形的性質(zhì)得AH=BH,再在Rt△BEH中利用tanB==可計算出BH=5,從而得到EF=AB=2BH=1.【題目詳解】(1)證明:如圖1,∵平行四邊形ABCD紙片沿EF折疊,使點C與點A重合,點D落在點G處,∴EA=EC,∠1=∠2,∵四邊形ABCD為平行四邊形,∴AD∥BC,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=CE,而AF∥CE,∴四邊形AECF為平行四邊形,∵EA=EC,∴四邊形AECF為菱形;(2)解:作EH⊥AB于H,如圖,∵E為BC中點,BC=26,∴BE=EC=13,∵四邊形AECF為菱形,∴AE=AF=CE=13,∴AF=BE,∴四邊形ABEF為平行四邊形,∴EF=AB,∵EA=EB,EH⊥AB,∴AH=BH,在Rt△BEH中,tanB==,設(shè)EH=12x,BH=5x,則BE=13x,∴13x=13,解得x=1,∴BH=5,∴AB=2BH=1,∴EF=1.【題目點撥】本題考查了折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.也考查了平行四邊形的性質(zhì)、菱形的判定與性質(zhì).25、(1);(2);(3)一.【解題分析】

(1)直接利用概率公式求解;

(2)畫樹狀圖(用Z表示正確選項,C表示錯誤選項)展示所有9種等可能的結(jié)果數(shù),找出小敏順利通關(guān)的結(jié)果數(shù),然后根據(jù)概率公式計算出小敏順利通關(guān)的概率;

(3)與(2)方法一樣求出小穎將“求助”留在第一道題使用,小敏順利通關(guān)的概率,然后比較兩個概率的大小可判斷小敏在答第幾道題時使用“求助”.【題目詳解】解:(1)若小敏第一道題不使用“求助”,那么小敏答對第一道題的概率=;

故答案為;

(2)若小敏將“求助”留在第二道題使用,那么小敏順利通關(guān)的概率是.理由如下:

畫樹狀圖為:(用Z表示正確選項,C表示錯誤選項)

共有9種等可能的結(jié)果數(shù),其中小穎順利通關(guān)的結(jié)果數(shù)為1,

所以小敏順利通關(guān)的概率=;

(3)若小敏將“求助”留在第一道題使用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論