2024屆安徽省銅陵市名校中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第1頁(yè)
2024屆安徽省銅陵市名校中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第2頁(yè)
2024屆安徽省銅陵市名校中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第3頁(yè)
2024屆安徽省銅陵市名校中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第4頁(yè)
2024屆安徽省銅陵市名校中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆安徽省銅陵市名校中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,菱形ABCD的對(duì)角線交于點(diǎn)O,AC=8cm,BD=6cm,則菱形的高為()A.cm B.cm C.cm D.cm2.甲、乙兩名同學(xué)進(jìn)行跳高測(cè)試,每人10次跳高的平均成績(jī)恰好都是1.6米,方差分別是S甲2=A.甲 B.乙 C.甲乙同樣穩(wěn)定 D.無(wú)法確定3.如圖,在中,、分別為、邊上的點(diǎn),,與相交于點(diǎn),則下列結(jié)論一定正確的是()A. B.C. D.4.函數(shù)y=ax2與y=﹣ax+b的圖象可能是()A. B.C. D.5.如圖,G,E分別是正方形ABCD的邊AB,BC上的點(diǎn),且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結(jié)論有()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)6.在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個(gè)相鄰的數(shù),這三個(gè)數(shù)的和不可能是()A.27 B.51 C.69 D.727.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=28.內(nèi)角和為540°的多邊形是()A. B. C. D.9.如圖,AB是⊙O的直徑,D,E是半圓上任意兩點(diǎn),連接AD,DE,AE與BD相交于點(diǎn)C,要使△ADC與△BDA相似,可以添加一個(gè)條件.下列添加的條件中錯(cuò)誤的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD10.下列運(yùn)算正確的是()A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-311.如圖,△ABC中,AB=AC,BC=12cm,點(diǎn)D在AC上,DC=4cm,將線段DC沿CB方向平移7cm得到線段EF,點(diǎn)E、F分別落在邊AB、BC上,則△EBF的周長(zhǎng)是()cm.A.7 B.11 C.13 D.1612.如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.給出如下幾個(gè)結(jié)論:①△AED≌△DFB;②S四邊形BCDG=32其中正確的結(jié)論個(gè)數(shù)為()A.4 B.3 C.2 D.1二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖所示,P為∠α的邊OA上一點(diǎn),且P點(diǎn)的坐標(biāo)為(3,4),則sinα+cosα=_____.14.我國(guó)古代有這樣一道數(shù)學(xué)問(wèn)題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達(dá)其頂,問(wèn)葛藤之長(zhǎng)幾何?”題意是:如圖所示,把枯木看作一個(gè)圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長(zhǎng)為3尺,有葛藤自點(diǎn)A處纏繞而上,繞五周后其末端恰好到達(dá)點(diǎn)B處,則問(wèn)題中葛藤的最短長(zhǎng)度是尺.

15.如果2,那么=_____(用向量,表示向量).16.如圖,從一個(gè)直徑為1m的圓形鐵片中剪出一個(gè)圓心角為90°的扇形,再將剪下的扇形圍成一個(gè)圓錐,則圓錐的底面半徑為_(kāi)____m.17.實(shí)數(shù),﹣3,,,0中的無(wú)理數(shù)是_____.18.如圖,已知直線y=x+4與雙曲線y=(x<0)相交于A、B兩點(diǎn),與x軸、y軸分別相交于D、C兩點(diǎn),若AB=2,則k=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)先化簡(jiǎn),再求代數(shù)式()÷的值,其中a=2sin45°+tan45°.20.(6分)如圖1,在平面直角坐標(biāo)系xOy中,拋物線C:y=ax2+bx+c與x軸相交于A,B兩點(diǎn),頂點(diǎn)為D(0,4),AB=4,設(shè)點(diǎn)F(m,0)是x軸的正半軸上一點(diǎn),將拋物線C繞點(diǎn)F旋轉(zhuǎn)180°,得到新的拋物線C′.(1)求拋物線C的函數(shù)表達(dá)式;(2)若拋物線C′與拋物線C在y軸的右側(cè)有兩個(gè)不同的公共點(diǎn),求m的取值范圍.(3)如圖2,P是第一象限內(nèi)拋物線C上一點(diǎn),它到兩坐標(biāo)軸的距離相等,點(diǎn)P在拋物線C′上的對(duì)應(yīng)點(diǎn)P′,設(shè)M是C上的動(dòng)點(diǎn),N是C′上的動(dòng)點(diǎn),試探究四邊形PMP′N能否成為正方形?若能,求出m的值;若不能,請(qǐng)說(shuō)明理由.21.(6分)在Rt△ABC中,∠BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn).過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于點(diǎn)F.(1)求證:△AEF≌△DEB;(2)證明四邊形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD的面積.22.(8分)已知:如圖,點(diǎn)E是正方形ABCD的邊CD上一點(diǎn),點(diǎn)F是CB的延長(zhǎng)線上一點(diǎn),且DE=BF.求證:EA⊥AF.23.(8分)已知?jiǎng)狱c(diǎn)P以每秒2

cm的速度沿圖(1)的邊框按從B?C?D?E?F?A的路徑移動(dòng),相應(yīng)的△ABP的面積S與時(shí)間t之間的關(guān)系如圖(2)中的圖象表示.若AB=6

cm,試回答下列問(wèn)題:(1)圖(1)中的BC長(zhǎng)是多少?(2)圖(2)中的a是多少?(3)圖(1)中的圖形面積是多少?(4)圖(2)中的b是多少?24.(10分)如圖,在△ABC中,點(diǎn)D是AB邊的中點(diǎn),點(diǎn)E是CD邊的中點(diǎn),過(guò)點(diǎn)C作CF∥AB交AE的延長(zhǎng)線于點(diǎn)F,連接BF.求證:DB=CF;(2)如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結(jié)論.25.(10分)綜合與實(shí)踐:概念理解:將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角記為θ(0°≤θ≤90°),并使各邊長(zhǎng)變?yōu)樵瓉?lái)的n倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],:.問(wèn)題解決:(2)如圖,在△ABC中,∠BAC=30°,∠ACB=90°,對(duì)△ABC作變換[θ,n]得到△AB′C′,使點(diǎn)B,C,C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值.拓廣探索:(3)在△ABC中,∠BAC=45°,∠ACB=90°,對(duì)△ABC作變換得到△AB′C′,則四邊形ABB′C′為正方形26.(12分)小方與同學(xué)一起去郊游,看到一棵大樹斜靠在一小土坡上,他想知道樹有多長(zhǎng),于是他借來(lái)測(cè)角儀和卷尺.如圖,他在點(diǎn)C處測(cè)得樹AB頂端A的仰角為30°,沿著CB方向向大樹行進(jìn)10米到達(dá)點(diǎn)D,測(cè)得樹AB頂端A的仰角為45°,又測(cè)得樹AB傾斜角∠1=75°.(1)求AD的長(zhǎng).(2)求樹長(zhǎng)AB.27.(12分)為落實(shí)“美麗撫順”的工作部署,市政府計(jì)劃對(duì)城區(qū)道路進(jìn)行了改造,現(xiàn)安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)的工作效率是乙隊(duì)工作效率的倍,甲隊(duì)改造360米的道路比乙隊(duì)改造同樣長(zhǎng)的道路少用3天.甲、乙兩工程隊(duì)每天能改造道路的長(zhǎng)度分別是多少米?若甲隊(duì)工作一天需付費(fèi)用7萬(wàn)元,乙隊(duì)工作一天需付費(fèi)用5萬(wàn)元,如需改造的道路全長(zhǎng)1200米,改造總費(fèi)用不超過(guò)145萬(wàn)元,至少安排甲隊(duì)工作多少天?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解題分析】試題解析:∵菱形ABCD的對(duì)角線根據(jù)勾股定理,設(shè)菱形的高為h,則菱形的面積即解得即菱形的高為cm.故選B.2、A【解題分析】

根據(jù)方差的意義可作出判斷.方差是用來(lái)衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.【題目詳解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙兩名同學(xué)成績(jī)更穩(wěn)定的是甲;故選A.【題目點(diǎn)撥】本題考查方差的意義.方差是用來(lái)衡量一組數(shù)據(jù)波動(dòng)大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動(dòng)越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動(dòng)越小,數(shù)據(jù)越穩(wěn)定.3、A【解題分析】

根據(jù)平行線分線段成比例定理逐項(xiàng)分析即可.【題目詳解】A.∵,∴,,∴,故A正確;B.∵,∴,故B不正確;C.∵,∴,故C不正確;D.∵,∴,故D不正確;故選A.【題目點(diǎn)撥】本題考查了平行線分線段成比例定理,平行線分線段成比例定理指的是兩條直線被一組平行線所截,截得的對(duì)應(yīng)線段的長(zhǎng)度成比例.推論:平行于三角形一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形的三邊對(duì)應(yīng)成比例.4、B【解題分析】選項(xiàng)中,由圖可知:在,;在,,∴,所以A錯(cuò)誤;選項(xiàng)中,由圖可知:在,;在,,∴,所以B正確;選項(xiàng)中,由圖可知:在,;在,,∴,所以C錯(cuò)誤;選項(xiàng)中,由圖可知:在,;在,,∴,所以D錯(cuò)誤.故選B.點(diǎn)睛:在函數(shù)與中,相同的系數(shù)是“”,因此只需根據(jù)“拋物線”的開(kāi)口方向和“直線”的變化趨勢(shì)確定出兩個(gè)解析式中“”的符號(hào),看兩者的符號(hào)是否一致即可判斷它們?cè)谕蛔鴺?biāo)系中的圖象情況,而這與“b”的取值無(wú)關(guān).5、C【解題分析】

由∠BEG=45°知∠BEA>45°,結(jié)合∠AEF=90°得∠HEC<45°,據(jù)此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據(jù)SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據(jù)相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【題目詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯(cuò)誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯(cuò)誤;故選:C.【題目點(diǎn)撥】本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的判定,勾股定理等知識(shí)點(diǎn)的綜合運(yùn)用,綜合比較強(qiáng),難度較大.6、D【解題分析】設(shè)第一個(gè)數(shù)為x,則第二個(gè)數(shù)為x+7,第三個(gè)數(shù)為x+1.列出三個(gè)數(shù)的和的方程,再根據(jù)選項(xiàng)解出x,看是否存在.解:設(shè)第一個(gè)數(shù)為x,則第二個(gè)數(shù)為x+7,第三個(gè)數(shù)為x+1故三個(gè)數(shù)的和為x+x+7+x+1=3x+21當(dāng)x=16時(shí),3x+21=69;當(dāng)x=10時(shí),3x+21=51;當(dāng)x=2時(shí),3x+21=2.故任意圈出一豎列上相鄰的三個(gè)數(shù)的和不可能是3.故選D.“點(diǎn)睛“此題主要考查了一元一次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系列出方程,再求解.7、C【解題分析】試題解析:x(x+1)=0,

?x=0或x+1=0,

解得x1=0,x1=-1.

故選C.8、C【解題分析】試題分析:設(shè)它是n邊形,根據(jù)題意得,(n﹣2)?180°=140°,解得n=1.故選C.考點(diǎn):多邊形內(nèi)角與外角.9、D【解題分析】

解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A選項(xiàng)正確;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B選項(xiàng)正確;∵AD2=BD?CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C選項(xiàng)正確;∵CD?AB=AC?BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是對(duì)應(yīng)夾角,故D選項(xiàng)錯(cuò)誤,故選:D.考點(diǎn):1.圓周角定理2.相似三角形的判定10、D【解題分析】試題分析:A、原式=a6,錯(cuò)誤;B、原式=a2﹣2ab+b2,錯(cuò)誤;C、原式不能合并,錯(cuò)誤;D、原式=﹣3,正確,故選D考點(diǎn):完全平方公式;合并同類項(xiàng);同底數(shù)冪的乘法;平方差公式.11、C【解題分析】

直接利用平移的性質(zhì)得出EF=DC=4cm,進(jìn)而得出BE=EF=4cm,進(jìn)而求出答案.【題目詳解】∵將線段DC沿著CB的方向平移7cm得到線段EF,∴EF=DC=4cm,F(xiàn)C=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周長(zhǎng)為:4+4+5=13(cm).故選C.【題目點(diǎn)撥】此題主要考查了平移的性質(zhì),根據(jù)題意得出BE的長(zhǎng)是解題關(guān)鍵.12、B【解題分析】試題分析:①∵ABCD為菱形,∴AB=AD,∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本選項(xiàng)正確;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點(diǎn)B、C、D、G四點(diǎn)共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,過(guò)點(diǎn)C作CM⊥GB于M,CN⊥GD于N(如圖1),則△CBM≌△CDN(AAS),∴S四邊形BCDG=S四邊形CMGN,S四邊形CMGN=2S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四邊形CMGN=2S△CMG=2×12×12CG×③過(guò)點(diǎn)F作FP∥AE于P點(diǎn)(如圖2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:12④當(dāng)點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn)時(shí)(如圖3),由(1)知,△ABD,△BDC為等邊三角形,∵點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn),∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC與△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本選項(xiàng)錯(cuò)誤;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項(xiàng)正確;綜上所述,正確的結(jié)論有①③⑤,共3個(gè),故選B.考點(diǎn):四邊形綜合題.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解題分析】

根據(jù)正弦和余弦的概念求解.【題目詳解】解:∵P是∠α的邊OA上一點(diǎn),且P點(diǎn)坐標(biāo)為(3,4),∴PB=4,OB=3,OP==5,故sinα==,cosα=,∴sinα+cosα=,故答案為【題目點(diǎn)撥】此題考查的是銳角三角函數(shù)的定義,解答此類題目的關(guān)鍵是找出所求角的對(duì)應(yīng)邊.14、1.【解題分析】試題分析:這種立體圖形求最短路徑問(wèn)題,可以展開(kāi)成為平面內(nèi)的問(wèn)題解決,展開(kāi)后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問(wèn)題,根據(jù)勾股定理可求出葛藤長(zhǎng)為=1(尺).故答案為1.考點(diǎn):平面展開(kāi)最短路徑問(wèn)題15、【解題分析】∵2(+)=+,∴2+2=+,∴=-2,故答案為.點(diǎn)睛:本題看成平面向量、一元一次方程等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考基礎(chǔ)題.16、m.【解題分析】

利用勾股定理易得扇形的半徑,那么就能求得扇形的弧長(zhǎng),除以2π即為圓錐的底面半徑.【題目詳解】解:易得扇形的圓心角所對(duì)的弦是直徑,∴扇形的半徑為:m,∴扇形的弧長(zhǎng)為:=πm,∴圓錐的底面半徑為:π÷2π=m.【題目點(diǎn)撥】本題考查:90度的圓周角所對(duì)的弦是直徑;圓錐的側(cè)面展開(kāi)圖的弧長(zhǎng)等于圓錐的底面周長(zhǎng),解題關(guān)鍵是弧長(zhǎng)公式.17、【解題分析】

無(wú)理數(shù)包括三方面的數(shù):①含π的,②一些開(kāi)方開(kāi)不盡的根式,③一些有規(guī)律的數(shù),根據(jù)以上內(nèi)容判斷即可.【題目詳解】解:=4,是有理數(shù),﹣3、、0都是有理數(shù),是無(wú)理數(shù).故答案為:.【題目點(diǎn)撥】本題考查了對(duì)無(wú)理數(shù)的定義的理解和運(yùn)用,注意:無(wú)理數(shù)是指無(wú)限不循環(huán)小數(shù),包括三方面的數(shù):①含π的,②一些開(kāi)方開(kāi)不盡的根式,③一些有規(guī)律的數(shù).18、-3【解題分析】設(shè)A(a,a+4),B(c,c+4),則解得:x+4=,即x2+4x?k=0,∵直線y=x+4與雙曲線y=相交于A、B兩點(diǎn),∴a+c=?4,ac=-k,∴(c?a)2=(c+a)2?4ac=16+4k,∵AB=,∴由勾股定理得:(c?a)2+[c+4?(a+4)]2=()2,2(c?a)2=8,(c?a)2=4,∴16+4k=4,解得:k=?3,故答案為?3.點(diǎn)睛:本題考查了一次函數(shù)與反比例函數(shù)的交點(diǎn)問(wèn)題、根與系數(shù)的關(guān)系、勾股定理、圖象上點(diǎn)的坐標(biāo)特征等,題目具有一定的代表性,綜合性強(qiáng),有一定難度.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、,.【解題分析】

先把小括號(hào)內(nèi)的通分,按照分式的減法和分式除法法則進(jìn)行化簡(jiǎn),再把字母的值代入運(yùn)算即可.【題目詳解】解:原式當(dāng)時(shí)原式【題目點(diǎn)撥】考查分式的混合運(yùn)算,掌握運(yùn)算順序是解題的關(guān)鍵.20、(1);(2)2<m<;(1)m=6或m=﹣1.【解題分析】

(1)由題意拋物線的頂點(diǎn)C(0,4),A(,0),設(shè)拋物線的解析式為,把A(,0)代入可得a=,由此即可解決問(wèn)題;(2)由題意拋物線C′的頂點(diǎn)坐標(biāo)為(2m,﹣4),設(shè)拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側(cè)有兩個(gè)不同的公共點(diǎn),則有,解不等式組即可解決問(wèn)題;(1)情形1,四邊形PMP′N能成為正方形.作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當(dāng)△PFM是等腰直角三角形時(shí),四邊形PMP′N是正方形,推出PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系數(shù)法即可解決問(wèn)題;情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系數(shù)法即可解決問(wèn)題.【題目詳解】(1)由題意拋物線的頂點(diǎn)C(0,4),A(,0),設(shè)拋物線的解析式為,把A(,0)代入可得a=,∴拋物線C的函數(shù)表達(dá)式為.(2)由題意拋物線C′的頂點(diǎn)坐標(biāo)為(2m,﹣4),設(shè)拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側(cè)有兩個(gè)不同的公共點(diǎn),則有,解得2<m<,∴滿足條件的m的取值范圍為2<m<.(1)結(jié)論:四邊形PMP′N能成為正方形.理由:1情形1,如圖,作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當(dāng)△PFM是等腰直角三角形時(shí),四邊形PMP′N是正方形,∴PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵點(diǎn)M在上,∴,解得m=﹣1或﹣﹣1(舍棄),∴m=﹣1時(shí),四邊形PMP′N是正方形.情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入中,,解得m=6或0(舍棄),∴m=6時(shí),四邊形PMP′N是正方形.綜上所述:m=6或m=﹣1時(shí),四邊形PMP′N是正方形.21、(1)證明詳見(jiàn)解析;(2)證明詳見(jiàn)解析;(3)1.【解題分析】

(1)利用平行線的性質(zhì)及中點(diǎn)的定義,可利用AAS證得結(jié)論;

(2)由(1)可得AF=BD,結(jié)合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質(zhì)可證得AD=CD,可證得四邊形ADCF為菱形;

(3)連接DF,可證得四邊形ABDF為平行四邊形,則可求得DF的長(zhǎng),利用菱形的面積公式可求得答案.【題目詳解】(1)證明:∵AF∥BC,

∴∠AFE=∠DBE,

∵E是AD的中點(diǎn),

∴AE=DE,

在△AFE和△DBE中,

∴△AFE≌△DBE(AAS);

(2)證明:由(1)知,△AFE≌△DBE,則AF=DB.

∵AD為BC邊上的中線

∴DB=DC,

∴AF=CD.

∵AF∥BC,

∴四邊形ADCF是平行四邊形,

∵∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn),

∴AD=DC=BC,

∴四邊形ADCF是菱形;

(3)連接DF,

∵AF∥BD,AF=BD,

∴四邊形ABDF是平行四邊形,

∴DF=AB=5,

∵四邊形ADCF是菱形,

∴S菱形ADCF=AC?DF=×4×5=1.【題目點(diǎn)撥】本題主要考查菱形的性質(zhì)及判定,利用全等三角形的性質(zhì)證得AF=CD是解題的關(guān)鍵,注意菱形面積公式的應(yīng)用.22、見(jiàn)解析【解題分析】

根據(jù)條件可以得出AD=AB,∠ABF=∠ADE=90°,從而可以得出△ABF≌△ADE,就可以得出∠FAB=∠EAD,就可以得出結(jié)論.【題目詳解】證明:∵四邊形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°.∵在△BAF和△DAE中,,∴△BAF≌△DAE(SAS),∴∠FAB=∠EAD,∵∠EAD+∠BAE=90°,∴∠FAB+∠BAE=90°,∴∠FAE=90°,∴EA⊥AF.23、(1)8cm(2)24cm2(3)60cm2(4)17s【解題分析】

(1)根據(jù)題意得:動(dòng)點(diǎn)P在BC上運(yùn)動(dòng)的時(shí)間是4秒,又由動(dòng)點(diǎn)的速度,可得BC的長(zhǎng);(2)由(1)可得BC的長(zhǎng),又由AB=6cm,可以計(jì)算出△ABP的面積,計(jì)算可得a的值;(3)分析圖形可得,甲中的圖形面積等于AB×AF-CD×DE,根據(jù)圖象求出CD和DE的長(zhǎng),代入數(shù)據(jù)計(jì)算可得答案,(4)計(jì)算BC+CD+DE+EF+FA的長(zhǎng)度,又由P的速度,計(jì)算可得b的值.【題目詳解】(1)由圖象知,當(dāng)t由0增大到4時(shí),點(diǎn)P由BC,∴BC==4×2=8(㎝);(2)a=S△ABC=×6×8=24(㎝2);(3)同理,由圖象知CD=4㎝,DE=6㎝,則EF=2㎝,AF=14㎝∴圖1中的圖象面積為6×14-4×6=60㎝2;(4)圖1中的多邊形的周長(zhǎng)為(14+6)×2=40㎝b=(40-6)÷2=17秒.24、(1)證明見(jiàn)解析;(2)四邊形BDCF是矩形,理由見(jiàn)解析.【解題分析】(1)證明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四邊形BDCF是矩形.證明:由(1)知DB=CF,又DB∥CF,∴四邊形BDCF為平行四邊形.∵AC=BC,AD=DB,∴CD⊥AB.∴四邊形BDCF是矩形.25、(1);(2);(3).【解題分析】

(1)根據(jù)定義可知△ABC∽△AB′C′,再根據(jù)相似三角形的面積之比等于相似比的平方即可;(2)根據(jù)四邊形是矩形,得出,進(jìn)而得出,根據(jù)30°直角三角形的性質(zhì)即可得出答案;(3)根據(jù)四邊形ABB′C′為正方形,從而得出,再根據(jù)等腰直角三角形的性質(zhì)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論