安徽省淮北市重點名校2024屆中考五模數(shù)學(xué)試題含解析_第1頁
安徽省淮北市重點名校2024屆中考五模數(shù)學(xué)試題含解析_第2頁
安徽省淮北市重點名校2024屆中考五模數(shù)學(xué)試題含解析_第3頁
安徽省淮北市重點名校2024屆中考五模數(shù)學(xué)試題含解析_第4頁
安徽省淮北市重點名校2024屆中考五模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

安徽省淮北市重點名校2024屆中考五模數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是()A. B. C. D.2.將一副直角三角尺如圖放置,若∠AOD=20°,則∠BOC的大小為()A.140° B.160° C.170° D.150°3.填在下面各正方形中的四個數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,m的值應(yīng)是()A.110 B.158 C.168 D.1784.在圓錐、圓柱、球、正方體這四個幾何體中,主視圖不可能是多邊形的是()A.圓錐 B.圓柱 C.球 D.正方體5.某廠接到加工720件衣服的訂單,預(yù)計每天做48件,正好按時完成,后因客戶要求提前5天交貨,設(shè)每天應(yīng)多做x件才能按時交貨,則x應(yīng)滿足的方程為()A. B.C. D.6.若二次函數(shù)y=ax2+bx+c的x與y的部分對應(yīng)值如下表:x﹣2﹣1012y830﹣10則拋物線的頂點坐標(biāo)是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)7.已知關(guān)于x的一元二次方程有實數(shù)根,則m的取值范圍是()A. B. C. D.8.某公園有A、B、C、D四個入口,每個游客都是隨機從一個入口進入公園,則甲、乙兩位游客恰好從同一個入口進入公園的概率是()A. B. C. D.9.下列圖形中既是中心對稱圖形又是軸對稱圖形的是A. B. C. D.10.圖1~圖4是四個基本作圖的痕跡,關(guān)于四條?、?、②、③、④有四種說法:?、偈且設(shè)為圓心,任意長為半徑所畫的?。换、谑且訮為圓心,任意長為半徑所畫的?。换、凼且訟為圓心,任意長為半徑所畫的??;弧④是以P為圓心,任意長為半徑所畫的??;其中正確說法的個數(shù)為()A.4 B.3 C.2 D.111.下列圖形是幾家通訊公司的標(biāo)志,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.12.若一組數(shù)據(jù)2,3,,5,7的眾數(shù)為7,則這組數(shù)據(jù)的中位數(shù)為()A.2 B.3 C.5 D.7二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知函數(shù)y=3x+b和y=ax﹣3的圖象交于點P(﹣2,﹣5),則根據(jù)圖象可得不等式3x+b>ax﹣3的解集是_____.14.在平面直角坐標(biāo)系中,點A1,A2,A3和B1,B2,B3分別在直線y=和x軸上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.則A3的坐標(biāo)為_______.

.15.計算:=____.16.在一次摸球?qū)嶒炛校蛳鋬?nèi)放有白色、黃色乒乓球共50個,這兩種乒乓球的大小、材質(zhì)都相同.小明發(fā)現(xiàn),摸到白色乒乓球的頻率穩(wěn)定在60%左右,則箱內(nèi)黃色乒乓球的個數(shù)很可能是________.17.如圖,已知,第一象限內(nèi)的點A在反比例函數(shù)y=的圖象上,第四象限內(nèi)的點B在反比例函數(shù)y=的圖象上.且OA⊥OB,∠OAB=60°,則k的值為_________.18.飛機著陸后滑行的距離S(單位:米)與滑行的時間t(單位:秒)之間的函數(shù)關(guān)系式是s=60t﹣1.2t2,那么飛機著陸后滑行_____秒停下.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)科技改變世界.2017年底,快遞分揀機器人從微博火到了朋友圈,據(jù)介紹,這些機器人不僅可以自動規(guī)劃最優(yōu)路線,將包裹準(zhǔn)確地放入相應(yīng)的格口,還會感應(yīng)避讓障礙物,自動歸隊取包裹.沒電的時候還會自己找充電樁充電.某快遞公司啟用80臺A種機器人、300臺B種機器人分揀快遞包裹.A,B兩種機器人全部投入工作,1小時共可以分揀1.44萬件包裹,若全部A種機器人工作3小時,全部B種機器人工作2小時,一共可以分揀3.12萬件包裹.(1)求兩種機器人每臺每小時各分揀多少件包裹;(2)為了進一步提高效率,快遞公司計劃再購進A,B兩種機器人共200臺,若要保證新購進的這批機器人每小時的總分揀量不少于7000件,求最多應(yīng)購進A種機器人多少臺?20.(6分)如圖,點A,C,B,D在同一條直線上,BE∥DF,∠A=∠F,AB=FD,求證:AE=FC.21.(6分)如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標(biāo)為(-3,0).(1)求點B的坐標(biāo);(2)已知,C為拋物線與y軸的交點.①若點P在拋物線上,且,求點P的坐標(biāo);②設(shè)點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.22.(8分)某校七年級開展征文活動,征文主題只能從“愛國”“敬業(yè)”“誠信”“友善”四個主題中選擇一個,七年級每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機抽取了部分征文進行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.(1)將上面的條形統(tǒng)計圖補充完整;(2)在扇形統(tǒng)計圖中,選擇“愛國”主題所對應(yīng)的圓心角是多少度?(3)如果該校七年級共有1200名考生,請估計選擇以“友善”為主題的七年級學(xué)生有多少名?23.(8分)如圖,在Rt△ABC中,∠C=90°,AB的垂直平分線交AC于點D,交AB于點E.(1)求證:△ADE~△ABC;(2)當(dāng)AC=8,BC=6時,求DE的長.24.(10分)在△ABC中,,以邊AB上一點O為圓心,OA為半徑的圈與BC相切于點D,分別交AB,AC于點E,F(xiàn)如圖①,連接AD,若,求∠B的大小;如圖②,若點F為的中點,的半徑為2,求AB的長.25.(10分)如圖,點P是⊙O外一點,請你用尺規(guī)畫出一條直線PA,使得其與⊙O相切于點A,(不寫作法,保留作圖痕跡)26.(12分)為落實黨中央“長江大保護”新發(fā)展理念,我市持續(xù)推進長江岸線保護,還洞庭湖和長江水清岸綠的自然生態(tài)原貌.某工程隊負(fù)責(zé)對一面積為33000平方米的非法砂石碼頭進行拆除,回填土方和復(fù)綠施工,為了縮短工期,該工程隊增加了人力和設(shè)備,實際工作效率比原計劃每天提高了20%,結(jié)果提前11天完成任務(wù),求實際平均每天施工多少平方米?27.(12分)隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已經(jīng)成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設(shè)他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間(單位:分鐘)是關(guān)于x的一次函數(shù),其關(guān)系如下表:地鐵站ABCDEX(千米)891011.513(分鐘)1820222528(1)求關(guān)于x的函數(shù)表達(dá)式;李華騎單車的時間(單位:分鐘)也受x的影響,其關(guān)系可以用來描述.請問:李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮回到家所需的時間最短?并求出最短時間.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】

根據(jù)菱形的性質(zhì)得出△DAB是等邊三角形,進而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進而求出即可.【題目詳解】連接BD,∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設(shè)AD、BE相交于點G,設(shè)BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF-S△ABD==.故選B.2、B【解題分析】試題分析:根據(jù)∠AOD=20°可得:∠AOC=70°,根據(jù)題意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考點:角度的計算3、B【解題分析】根據(jù)排列規(guī)律,10下面的數(shù)是12,10右面的數(shù)是14,∵8=2×4?0,22=4×6?2,44=6×8?4,∴m=12×14?10=158.故選C.4、C【解題分析】【分析】根據(jù)各幾何體的主視圖可能出現(xiàn)的情況進行討論即可作出判斷.【題目詳解】A.圓錐的主視圖可以是三角形也可能是圓,故不符合題意;B.圓柱的主視圖可能是長方形也可能是圓,故不符合題意;C.球的主視圖只能是圓,故符合題意;D.正方體的主視圖是正方形或長方形(中間有一豎),故不符合題意,故選C.【題目點撥】本題考查了簡單幾何體的三視圖——主視圖,明確主視圖是從物體正面看得到的圖形是關(guān)鍵.5、D【解題分析】

因客戶的要求每天的工作效率應(yīng)該為:(48+x)件,所用的時間為:,根據(jù)“因客戶要求提前5天交貨”,用原有完成時間減去提前完成時間,可以列出方程:.故選D.6、C【解題分析】分析:由表中所給數(shù)據(jù),可求得二次函數(shù)解析式,則可求得其頂點坐標(biāo).詳解:當(dāng)或時,,當(dāng)時,,,解得,二次函數(shù)解析式為,拋物線的頂點坐標(biāo)為,故選C.點睛:本題主要考查二次函數(shù)的性質(zhì),利用條件求得二次函數(shù)的解析式是解題的關(guān)鍵.7、C【解題分析】

解:∵關(guān)于x的一元二次方程有實數(shù)根,∴△==,解得m≥1,故選C.【題目點撥】本題考查一元二次方程根的判別式.8、B【解題分析】

畫樹狀圖列出所有等可能結(jié)果,從中確定出甲、乙兩位游客恰好從同一個入口進入公園的結(jié)果數(shù),再利用概率公式計算可得.【題目詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結(jié)果,其中甲、乙兩位游客恰好從同一個入口進入公園的結(jié)果有4種,所以甲、乙兩位游客恰好從同一個入口進入公園的概率為=,故選B.【題目點撥】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式求事件A或B的概率.9、B【解題分析】

根據(jù)軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合.【題目詳解】A、是軸對稱圖形,不是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、是軸對稱圖形,不是中心對稱圖形,不符合題意;D、不是軸對稱圖形,是中心對稱圖形,不符合題意.故選B.10、C【解題分析】

根據(jù)基本作圖的方法即可得到結(jié)論.【題目詳解】解:(1)弧①是以O(shè)為圓心,任意長為半徑所畫的弧,正確;(2)弧②是以P為圓心,大于點P到直線的距離為半徑所畫的弧,錯誤;(3)?、凼且訟為圓心,大于AB的長為半徑所畫的弧,錯誤;(4)?、苁且訮為圓心,任意長為半徑所畫的弧,正確.故選C.【題目點撥】此題主要考查了基本作圖,解決問題的關(guān)鍵是掌握基本作圖的方法.11、C【解題分析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】A.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;B.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;C.是軸對稱圖形,也是中心對稱圖形.故正確;D.不是軸對稱圖形,是中心對稱圖形.故錯誤.故選C.【題目點撥】掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180°后與原圖重合.12、C【解題分析】試題解析:∵這組數(shù)據(jù)的眾數(shù)為7,∴x=7,則這組數(shù)據(jù)按照從小到大的順序排列為:2,3,1,7,7,中位數(shù)為:1.故選C.考點:眾數(shù);中位數(shù).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x>﹣1.【解題分析】

根據(jù)函數(shù)y=3x+b和y=ax-3的圖象交于點P(-1,-5),然后根據(jù)圖象即可得到不等式

3x+b>ax-3的解集.【題目詳解】解:∵函數(shù)y=3x+b和y=ax-3的圖象交于點P(-1,-5),∴不等式

3x+b>ax-3的解集是x>-1,故答案為:x>-1.【題目點撥】本題考查一次函數(shù)與一元一次不等式、一次函數(shù)的圖象,熟練掌握是解題的關(guān)鍵.14、A3()【解題分析】

設(shè)直線y=與x軸的交點為G,過點A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,由條件可求得,再根據(jù)等腰三角形可分別求得A1D、A2E、A3F,可得到A1,A2,A3的坐標(biāo).【題目詳解】設(shè)直線y=與x軸的交點為G,

令y=0可解得x=-4,

∴G點坐標(biāo)為(-4,0),

∴OG=4,

如圖1,過點A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,

∵△A1B1O為等腰直角三角形,

∴A1D=OD,

又∵點A1在直線y=x+上,

∴=,即=,解得A1D=1=()0,

∴A1(1,1),OB1=2,

同理可得=,即=,解得A2E==()1,則OE=OB1+B1E=,

∴A2(,),OB2=5,

同理可求得A3F==()2,則OF=5+=,

∴A3(,);故答案為(,)【題目點撥】本題主要考查等腰三角形的性質(zhì)和直線上點的坐標(biāo)特點,根據(jù)題意找到點的坐標(biāo)的變化規(guī)律是解題的關(guān)鍵,注意觀察數(shù)據(jù)的變化.15、1【解題分析】

根據(jù)算術(shù)平方根的定義進行化簡,再根據(jù)算術(shù)平方根的定義求解即可.【題目詳解】解:∵12=21,

∴=1,

故答案為:1.【題目點撥】本題考查了算術(shù)平方根的定義,先把化簡是解題的關(guān)鍵.16、20【解題分析】

先設(shè)出白球的個數(shù),根據(jù)白球的頻率求出白球的個數(shù),再用總的個數(shù)減去白球的個數(shù)即可.【題目詳解】設(shè)黃球的個數(shù)為x個,∵共有黃色、白色的乒乓球50個,黃球的頻率穩(wěn)定在60%,∴=60%,解得x=30,∴布袋中白色球的個數(shù)很可能是50-30=20(個).故答案為:20.【題目點撥】本題考查了利用頻率估計概率,熟練掌握該知識點是本題解題的關(guān)鍵.17、-6【解題分析】如圖,作AC⊥x軸,BD⊥x軸,∵OA⊥OB,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△ACO∽△ODB,∴,∵∠OAB=60°,∴,設(shè)A(x,),∴BD=OC=x,OD=AC=,∴B(x,-),把點B代入y=得,-=,解得k=-6,故答案為-6.18、1【解題分析】

飛機停下時,也就是滑行距離最遠(yuǎn)時,即在本題中需求出s最大時對應(yīng)的t值.【題目詳解】由題意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即當(dāng)t=1秒時,飛機才能停下來.故答案為1.【題目點撥】本題考查了二次函數(shù)的應(yīng)用.解題時,利用配方法求得t=2時,s取最大值.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)A種機器人每臺每小時各分揀30件包裹,B種機器人每臺每小時各分揀40件包裹(2)最多應(yīng)購進A種機器人100臺【解題分析】

(1)A種機器人每臺每小時各分揀x件包裹,B種機器人每臺每小時各分揀y件包裹,根據(jù)題意列方程組即可得到結(jié)論;(2)設(shè)最多應(yīng)購進A種機器人a臺,購進B種機器人(200?a)臺,由題意得,根據(jù)題意兩不等式即可得到結(jié)論.【題目詳解】(1)A種機器人每臺每小時各分揀x件包裹,B種機器人每臺每小時各分揀y件包裹,由題意得,,解得,,答:A種機器人每臺每小時各分揀30件包裹,B種機器人每臺每小時各分揀40件包裹;(2)設(shè)最多應(yīng)購進A種機器人a臺,購進B種機器人(200﹣a)臺,由題意得,30a+40(200﹣a)≥7000,解得:a≤100,則最多應(yīng)購進A種機器人100臺.【題目點撥】本題考查了二元一次方程組,一元一次不等式的應(yīng)用,正確的理解題意是解題的關(guān)鍵.20、證明見解析.【解題分析】由已知條件BE∥DF,可得出∠ABE=∠D,再利用ASA證明△ABE≌△FDC即可.證明:∵BE∥DF,∴∠ABE=∠D,在△ABE和△FDC中,∠ABE=∠D,AB=FD,∠A=∠F∴△ABE≌△FDC(ASA),∴AE=FC.“點睛”此題主要考查全等三角形的判定與性質(zhì)和平行線的性質(zhì)等知識點的理解和掌握,此題的關(guān)鍵是利用平行線的性質(zhì)求證△ABC和△FDC全等.21、(1)點B的坐標(biāo)為(1,0).(2)①點P的坐標(biāo)為(4,21)或(-4,5).②線段QD長度的最大值為.【解題分析】

(1)由拋物線的對稱性直接得點B的坐標(biāo).(2)①用待定系數(shù)法求出拋物線的解析式,從而可得點C的坐標(biāo),得到,設(shè)出點P的坐標(biāo),根據(jù)列式求解即可求得點P的坐標(biāo).②用待定系數(shù)法求出直線AC的解析式,由點Q在線段AC上,可設(shè)點Q的坐標(biāo)為(q,-q-3),從而由QD⊥x軸交拋物線于點D,得點D的坐標(biāo)為(q,q2+2q-3),從而線段QD等于兩點縱坐標(biāo)之差,列出函數(shù)關(guān)系式應(yīng)用二次函數(shù)最值原理求解.【題目詳解】解:(1)∵A、B兩點關(guān)于對稱軸對稱,且A點的坐標(biāo)為(-3,0),∴點B的坐標(biāo)為(1,0).(2)①∵拋物線,對稱軸為,經(jīng)過點A(-3,0),∴,解得.∴拋物線的解析式為.∴B點的坐標(biāo)為(0,-3).∴OB=1,OC=3.∴.設(shè)點P的坐標(biāo)為(p,p2+2p-3),則.∵,∴,解得.當(dāng)時;當(dāng)時,,∴點P的坐標(biāo)為(4,21)或(-4,5).②設(shè)直線AC的解析式為,將點A,C的坐標(biāo)代入,得:,解得:.∴直線AC的解析式為.∵點Q在線段AC上,∴設(shè)點Q的坐標(biāo)為(q,-q-3).又∵QD⊥x軸交拋物線于點D,∴點D的坐標(biāo)為(q,q2+2q-3).∴.∵,∴線段QD長度的最大值為.22、(1)條形統(tǒng)計圖如圖所示,見解析;(2)選擇“愛國”主題所對應(yīng)的圓心角是144°;(3)估計選擇以“友善”為主題的七年級學(xué)生有360名.【解題分析】

(1)根據(jù)誠信的人數(shù)和所占的百分比求出抽取的總?cè)藬?shù),用總?cè)藬?shù)乘以友善所占的百分比,即可補全統(tǒng)計圖;(2)用360°乘以愛國所占的百分比,即可求出圓心角的度數(shù);(3)用該校七年級的總?cè)藬?shù)乘以“友善”所占的百分比,即可得出答案.【題目詳解】解:(1)本次調(diào)查共抽取的學(xué)生有(名)選擇“友善”的人數(shù)有(名)∴條形統(tǒng)計圖如圖所示:(2)∵選擇“愛國”主題所對應(yīng)的百分比為,∴選擇“愛國”主題所對應(yīng)的圓心角是;(3)該校七年級共有1200名學(xué)生,估計選擇以“友善”為主題的七年級學(xué)生有名.故答案為:(1)條形統(tǒng)計圖如圖所示,見解析;(2)選擇“愛國”主題所對應(yīng)的圓心角是144°;(3)估計選擇以“友善”為主題的七年級學(xué)生有360名.【題目點撥】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;利用統(tǒng)計圖獲取信息時,必須認(rèn)真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.23、(1)見解析;(2).【解題分析】

(1)根據(jù)兩角對應(yīng)相等,兩三角形相似即可判定;(2)利用相似三角形的性質(zhì)即可解決問題.【題目詳解】(1)∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB.(2)在Rt△ABC中,∵AC=8,BC=6,∴AB1.∵DE垂直平分AB,∴AE=EB=2.∵△AED∽△ACB,∴,∴,∴DE.【題目點撥】本題考查了相似三角形的判定和性質(zhì)、勾股定理、線段的垂直平分線的性質(zhì)等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題,屬于中考??碱}型.24、(1)∠B=40°;(2)AB=6.【解題分析】

(1)連接OD,由在△ABC中,∠C=90°,BC是切線,易得AC∥OD

,即可求得∠CAD=∠ADO

,繼而求得答案;

(2)首先連接OF,OD,由AC∥OD得∠OFA=∠FOD

,由點F為弧AD的中點,易得△AOF是等邊三角形,繼而求得答案.【題目詳解】解:(1)如解圖①,連接OD,∵BC切⊙O于點D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解圖②,連接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵點F為弧AD的中點,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF為等邊三角形,∴∠FAO=60°,則∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【題目點撥】本題考查了切線的性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論