![2024屆銅陵市重點(diǎn)中學(xué)中考猜題數(shù)學(xué)試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view10/M02/37/2D/wKhkGWVuBISAaH4mAAGZdWfFW_c222.jpg)
![2024屆銅陵市重點(diǎn)中學(xué)中考猜題數(shù)學(xué)試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view10/M02/37/2D/wKhkGWVuBISAaH4mAAGZdWfFW_c2222.jpg)
![2024屆銅陵市重點(diǎn)中學(xué)中考猜題數(shù)學(xué)試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view10/M02/37/2D/wKhkGWVuBISAaH4mAAGZdWfFW_c2223.jpg)
![2024屆銅陵市重點(diǎn)中學(xué)中考猜題數(shù)學(xué)試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view10/M02/37/2D/wKhkGWVuBISAaH4mAAGZdWfFW_c2224.jpg)
![2024屆銅陵市重點(diǎn)中學(xué)中考猜題數(shù)學(xué)試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view10/M02/37/2D/wKhkGWVuBISAaH4mAAGZdWfFW_c2225.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆銅陵市重點(diǎn)中學(xué)中考猜題數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AD是半圓O的直徑,AD=12,B,C是半圓O上兩點(diǎn).若,則圖中陰影部分的面積是()A.6π B.12π C.18π D.24π2.若關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則一次函數(shù)的圖象可能是:A. B. C. D.3.a(chǎn)≠0,函數(shù)y=與y=﹣ax2+a在同一直角坐標(biāo)系中的大致圖象可能是()A. B.C. D.4.一小組8位同學(xué)一分鐘跳繩的次數(shù)如下:150,176,168,183,172,164,168,185,則這組數(shù)據(jù)的中位數(shù)為()A.172 B.171 C.170 D.1685.已知一個(gè)正多邊形的一個(gè)外角為36°,則這個(gè)正多邊形的邊數(shù)是()A.8B.9C.10D.116.如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點(diǎn)C恰好落在AB邊上的點(diǎn)D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是()A. B. C. D.7.在平面直角坐標(biāo)系xOy中,若點(diǎn)P(3,4)在⊙O內(nèi),則⊙O的半徑r的取值范圍是()A.0<r<3 B.r>4 C.0<r<5 D.r>58.如圖是二次函數(shù)的部分圖象,由圖象可知不等式的解集是()A. B. C.且 D.x<-1或x>59.已知關(guān)于x的方程x2+3x+a=0有一個(gè)根為﹣2,則另一個(gè)根為()A.5 B.﹣1 C.2 D.﹣510.如圖,在矩形ABCD中,AB=3,AD=4,點(diǎn)E在邊BC上,若AE平分∠BED,則BE的長(zhǎng)為()A. B. C. D.4﹣二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.因式分解:x2﹣4=.12.當(dāng)時(shí),直線與拋物線有交點(diǎn),則a的取值范圍是_______.13.把拋物線y=x2﹣2x+3沿x軸向右平移2個(gè)單位,得到的拋物線解析式為.14.如圖是某商品的標(biāo)志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點(diǎn)A、B、C、D,得到四邊形ABCD,若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為_____.15.已知,,,是成比例的線段,其中,,,則_______.16.如圖,正方形內(nèi)的陰影部分是由四個(gè)直角邊長(zhǎng)都是1和3的直角三角形組成的,假設(shè)可以在正方形內(nèi)部隨意取點(diǎn),那么這個(gè)點(diǎn)取在陰影部分的概率為.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB﹣BC向終點(diǎn)C運(yùn)動(dòng),在AB上以每秒8個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),在BC上以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿CA方向以每秒個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P停止時(shí),點(diǎn)Q也隨之停止.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.(1)求線段AQ的長(zhǎng);(用含t的代數(shù)式表示)(2)當(dāng)點(diǎn)P在AB邊上運(yùn)動(dòng)時(shí),求PQ與△ABC的一邊垂直時(shí)t的值;(3)設(shè)△APQ的面積為S,求S與t的函數(shù)關(guān)系式;(4)當(dāng)△APQ是以PQ為腰的等腰三角形時(shí),直接寫出t的值.18.(8分)已知:如圖1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為2cm/s;同時(shí)點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向點(diǎn)C勻速運(yùn)動(dòng),速度為lcm/s;連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t秒(0<t<5),解答下列問題:(1)當(dāng)為t何值時(shí),PQ∥BC;(2)設(shè)△AQP的面積為y(cm2),求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最大值;(3)如圖2,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,是否存在某時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說明理由.19.(8分)某商場(chǎng)將進(jìn)價(jià)40元一個(gè)的某種商品按50元一個(gè)售出時(shí),每月能賣出500個(gè).商場(chǎng)想了兩個(gè)方案來增加利潤(rùn):方案一:提高價(jià)格,但這種商品每個(gè)售價(jià)漲價(jià)1元,銷售量就減少10個(gè);方案二:售價(jià)不變,但發(fā)資料做廣告.已知當(dāng)這種商品每月的廣告費(fèi)用為m(千元)時(shí),每月銷售量將是原銷售量的p倍,且p=.試通過計(jì)算,請(qǐng)你判斷商場(chǎng)為賺得更大的利潤(rùn)應(yīng)選擇哪種方案?請(qǐng)說明你判斷的理由!20.(8分)我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)21.(8分)如圖,在Rt△ABC中,,點(diǎn)在邊上,⊥,點(diǎn)為垂足,,∠DAB=450,tanB=.(1)求的長(zhǎng);(2)求的余弦值.22.(10分)為了提高服務(wù)質(zhì)量,某賓館決定對(duì)甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.(1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對(duì)兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?(3)在(2)的條件下,根據(jù)市場(chǎng)調(diào)查,每套乙種套房的提升費(fèi)用不會(huì)改變,每套甲種套房提升費(fèi)用將會(huì)提高a萬元(a>0),市政府如何確定方案才能使費(fèi)用最少?23.(12分)某公司計(jì)劃購(gòu)買A,B兩種型號(hào)的電腦,已知購(gòu)買一臺(tái)A型電腦需0.6萬元,購(gòu)買一臺(tái)B型電腦需0.4萬元,該公司準(zhǔn)備投入資金y萬元,全部用于購(gòu)進(jìn)35臺(tái)這兩種型號(hào)的電腦,設(shè)購(gòu)進(jìn)A型電腦x臺(tái).(1)求y關(guān)于x的函數(shù)解析式;(2)若購(gòu)進(jìn)B型電腦的數(shù)量不超過A型電腦數(shù)量的2倍,則該公司至少需要投入資金多少萬元?24.已知:如圖,在矩形紙片ABCD中,,,翻折矩形紙片,使點(diǎn)A落在對(duì)角線DB上的點(diǎn)F處,折痕為DE,打開矩形紙片,并連接EF.的長(zhǎng)為多少;求AE的長(zhǎng);在BE上是否存在點(diǎn)P,使得的值最小?若存在,請(qǐng)你畫出點(diǎn)P的位置,并求出這個(gè)最小值;若不存在,請(qǐng)說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】
根據(jù)圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°,根據(jù)扇形面積公式計(jì)算即可.【題目詳解】∵,∴∠AOB=∠BOC=∠COD=60°.∴陰影部分面積=.故答案為:A.【題目點(diǎn)撥】本題考查的知識(shí)點(diǎn)是扇形面積的計(jì)算,解題關(guān)鍵是利用圓心角與弧的關(guān)系得到∠AOB=∠BOC=∠COD=60°.2、B【解題分析】
由方程有兩個(gè)不相等的實(shí)數(shù)根,可得,解得,即異號(hào),當(dāng)時(shí),一次函數(shù)的圖象過一三四象限,當(dāng)時(shí),一次函數(shù)的圖象過一二四象限,故答案選B.3、D【解題分析】
分a>0和a<0兩種情況分類討論即可確定正確的選項(xiàng)【題目詳解】當(dāng)a>0時(shí),函數(shù)y=的圖象位于一、三象限,y=﹣ax2+a的開口向下,交y軸的正半軸,沒有符合的選項(xiàng),當(dāng)a<0時(shí),函數(shù)y=的圖象位于二、四象限,y=﹣ax2+a的開口向上,交y軸的負(fù)半軸,D選項(xiàng)符合;故選D.【題目點(diǎn)撥】本題考查了反比例函數(shù)的圖象及二次函數(shù)的圖象的知識(shí),解題的關(guān)鍵是根據(jù)比例系數(shù)的符號(hào)確定其圖象的位置,難度不大.4、C【解題分析】
先把所給數(shù)據(jù)從小到大排列,然后根據(jù)中位數(shù)的定義求解即可.【題目詳解】從小到大排列:150,164,168,168,,172,176,183,185,∴中位數(shù)為:(168+172)÷2=170.故選C.【題目點(diǎn)撥】本題考查了中位數(shù),如果一組數(shù)據(jù)有奇數(shù)個(gè),那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個(gè),那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個(gè)數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).5、C【解題分析】試題分析:已知一個(gè)正多邊形的一個(gè)外角為36°,則這個(gè)正多邊形的邊數(shù)是360÷36=10,故選C.考點(diǎn):多邊形的內(nèi)角和外角.6、C【解題分析】連接CD,交MN于E,∵將△ABC沿直線MN翻折后,頂點(diǎn)C恰好落在AB邊上的點(diǎn)D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵M(jìn)N∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.7、D【解題分析】
先利用勾股定理計(jì)算出OP=1,然后根據(jù)點(diǎn)與圓的位置關(guān)系的判定方法得到r的范圍.【題目詳解】∵點(diǎn)P的坐標(biāo)為(3,4),∴OP1.∵點(diǎn)P(3,4)在⊙O內(nèi),∴OP<r,即r>1.故選D.【題目點(diǎn)撥】本題考查了點(diǎn)與圓的位置關(guān)系:點(diǎn)的位置可以確定該點(diǎn)到圓心距離與半徑的關(guān)系,反過來已知點(diǎn)到圓心距離與半徑的關(guān)系可以確定該點(diǎn)與圓的位置關(guān)系.8、D【解題分析】利用二次函數(shù)的對(duì)稱性,可得出圖象與x軸的另一個(gè)交點(diǎn)坐標(biāo),結(jié)合圖象可得出的解集:由圖象得:對(duì)稱軸是x=2,其中一個(gè)點(diǎn)的坐標(biāo)為(1,0),∴圖象與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(-1,0).由圖象可知:的解集即是y<0的解集,∴x<-1或x>1.故選D.9、B【解題分析】
根據(jù)關(guān)于x的方程x2+3x+a=0有一個(gè)根為-2,可以設(shè)出另一個(gè)根,然后根據(jù)根與系數(shù)的關(guān)系可以求得另一個(gè)根的值,本題得以解決.【題目詳解】∵關(guān)于x的方程x2+3x+a=0有一個(gè)根為-2,設(shè)另一個(gè)根為m,
∴-2+m=?,
解得,m=-1,
故選B.10、D【解題分析】
首先根據(jù)矩形的性質(zhì),可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根據(jù)AE平分∠BED求得ED=AD;利用勾股定理求得EC的長(zhǎng),進(jìn)而求得BE的長(zhǎng).【題目詳解】∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,∴∠DAE=∠BEA,∵AE是∠DEB的平分線,∴∠BEA=∠AED,∴∠DAE=∠AED,∴DE=AD=4,再Rt△DEC中,EC===,∴BE=BC-EC=4-.故答案選D.【題目點(diǎn)撥】本題考查了矩形的性質(zhì)與角平分線的性質(zhì)以及勾股定理的應(yīng)用,解題的關(guān)鍵是熟練的掌握矩形的性質(zhì)與角平分線的性質(zhì)以及勾股定理的應(yīng)用.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、(x+2)(x-2).【解題分析】試題分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).考點(diǎn):因式分解-運(yùn)用公式法12、【解題分析】
直線與拋物線有交點(diǎn),則可化為一元二次方程組利用根的判別式進(jìn)行計(jì)算.【題目詳解】解:法一:與拋物線有交點(diǎn)則有,整理得解得,對(duì)稱軸法二:由題意可知,∵拋物線的頂點(diǎn)為,而∴拋物線y的取值為,則直線y與x軸平行,∴要使直線與拋物線有交點(diǎn),∴拋物線y的取值為,即為a的取值范圍,∴故答案為:【題目點(diǎn)撥】考查二次函數(shù)圖象的性質(zhì)及交點(diǎn)的問題,此類問題,通??苫癁橐辉畏匠?,利用根的判別式或根與系數(shù)的關(guān)系進(jìn)行計(jì)算.13、y=(x﹣3)2+2【解題分析】
根據(jù)題意易得新拋物線的頂點(diǎn),根據(jù)頂點(diǎn)式及平移前后二次項(xiàng)的系數(shù)不變可得新拋物線的解析式.【題目詳解】解:y=x2﹣2x+3=(x﹣1)2+2,其頂點(diǎn)坐標(biāo)為(1,2).向右平移2個(gè)單位長(zhǎng)度后的頂點(diǎn)坐標(biāo)為(3,2),得到的拋物線的解析式是y=(x﹣3)2+2,故答案為:y=(x﹣3)2+2.【題目點(diǎn)撥】此題主要考查了次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.14、10πcm1.【解題分析】
根據(jù)已知條件得到四邊形ABCD是矩形,求得圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,根據(jù)等腰三角形的性質(zhì)得到∠BAC=∠ABO=36°,由圓周角定理得到∠AOD=71°,于是得到結(jié)論.【題目詳解】解:∵AC與BD是⊙O的兩條直徑,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四邊形ABCD是矩形,∴S△ABO=S△CDO=S△AOD=S△BOD,∴圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,∵OA=OB,∴∠BAC=∠ABO=36°,∴∠AOD=71°,∴圖中陰影部分的面積=1×=10π,故答案為10πcm1.點(diǎn)睛:本題考查了扇形的面積,矩形的判定和性質(zhì),圓周角定理的推論,三角形外角的性質(zhì),熟練掌握扇形的面積公式是解題的關(guān)鍵.15、【解題分析】
如果其中兩條線段的乘積等于另外兩條線段的乘積,則四條線段叫成比例線段.根據(jù)定義ad=cb,將a,b及c的值代入即可求得d.【題目詳解】已知a,b,c,d是成比例線段,根據(jù)比例線段的定義得:ad=cb,代入a=3,b=2,c=6,解得:d=4,則d=4cm.故答案為:4【題目點(diǎn)撥】本題主要考查比例線段的定義.要注意考慮問題要全面.16、.【解題分析】試題分析:此題是求陰影部分的面積占正方形面積的幾分之幾,即為所求概率.陰影部分的面積為:3×1÷2×4=6,因?yàn)檎叫螌?duì)角線形成4個(gè)等腰直角三角形,所以邊長(zhǎng)是=,∴這個(gè)點(diǎn)取在陰影部分的概率為:6÷=6÷18=.考點(diǎn):求隨機(jī)事件的概率.三、解答題(共8題,共72分)17、(1)4﹣t;(2)當(dāng)點(diǎn)P在AB邊上運(yùn)動(dòng)時(shí),PQ與△ABC的一邊垂直時(shí)t的值是t=0或或;(3)S與t的函數(shù)關(guān)系式為:S=;(4)t的值為或.【解題分析】分析:(1)根據(jù)勾股定理求出AC的長(zhǎng),然后由AQ=AC-CQ求解即可;(2)當(dāng)點(diǎn)P在AB邊上運(yùn)動(dòng)時(shí),PQ與△ABC的一邊垂直,有三種情況:當(dāng)Q在C處,P在A處時(shí),PQ⊥BC;當(dāng)PQ⊥AB時(shí);當(dāng)PQ⊥AC時(shí);分別求解即可;(3)當(dāng)P在AB邊上時(shí),即0≤t≤1,作PG⊥AC于G,或當(dāng)P在邊BC上時(shí),即1<t≤3,分別根據(jù)三角形的面積求函數(shù)的解析式即可;(4)當(dāng)△APQ是以PQ為腰的等腰三角形時(shí),有兩種情況:①當(dāng)P在邊AB上時(shí),作PG⊥AC于G,則AG=GQ,列方程求解;②當(dāng)P在邊AC上時(shí),AQ=PQ,根據(jù)勾股定理求解.詳解:(1)如圖1,Rt△ABC中,∠A=30°,AB=8,∴BC=AB=4,∴AC=,由題意得:CQ=t,∴AQ=4﹣t;(2)當(dāng)點(diǎn)P在AB邊上運(yùn)動(dòng)時(shí),PQ與△ABC的一邊垂直,有三種情況:①當(dāng)Q在C處,P在A處時(shí),PQ⊥BC,此時(shí)t=0;②當(dāng)PQ⊥AB時(shí),如圖2,∵AQ=4﹣t,AP=8t,∠A=30°,∴cos30°=,∴,t=;③當(dāng)PQ⊥AC時(shí),如圖3,∵AQ=4﹣t,AP=8t,∠A=30°,∴cos30°=,∴t=;綜上所述,當(dāng)點(diǎn)P在AB邊上運(yùn)動(dòng)時(shí),PQ與△ABC的一邊垂直時(shí)t的值是t=0或或;(3)分兩種情況:①當(dāng)P在AB邊上時(shí),即0≤t≤1,如圖4,作PG⊥AC于G,∵∠A=30°,AP=8t,∠AGP=90°,∴PG=4t,∴S△APQ=AQ?PG=(4﹣t)?4t=﹣2t2+8t;②當(dāng)P在邊BC上時(shí),即1<t≤3,如圖5,由題意得:PB=2(t﹣1),∴PC=4﹣2(t﹣1)=﹣2t+6,∴S△APQ=AQ?PC=(4﹣t)(﹣2t+6)=t2;綜上所述,S與t的函數(shù)關(guān)系式為:S=;(4)當(dāng)△APQ是以PQ為腰的等腰三角形時(shí),有兩種情況:①當(dāng)P在邊AB上時(shí),如圖6,AP=PQ,作PG⊥AC于G,則AG=GQ,∵∠A=30°,AP=8t,∠AGP=90°,∴PG=4t,∴AG=4t,由AQ=2AG得:4﹣t=8t,t=,②當(dāng)P在邊AC上時(shí),如圖7,AQ=PQ,Rt△PCQ中,由勾股定理得:CQ2+CP2=PQ2,∴,t=或﹣(舍),綜上所述,t的值為或.點(diǎn)睛:此題主要考查了三角形中的動(dòng)點(diǎn)問題,用到勾股定理,等腰三角形的性質(zhì),直角三角形的性質(zhì),二次函數(shù)等知識(shí),是一道比較困難的綜合題,關(guān)鍵是合理添加輔助線,構(gòu)造合適的方程求解.18、(1)當(dāng)t=時(shí),PQ∥BC;(2)﹣(t﹣)2+,當(dāng)t=時(shí),y有最大值為;(3)存在,當(dāng)t=時(shí),四邊形PQP′C為菱形【解題分析】
(1)只要證明△APQ∽△ABC,可得=,構(gòu)建方程即可解決問題;(2)過點(diǎn)P作PD⊥AC于D,則有△APD∽△ABC,理由相似三角形的性質(zhì)構(gòu)建二次函數(shù)即可解決問題;
(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根據(jù)OC=CQ,構(gòu)建方程即可解決問題;【題目詳解】(1)在Rt△ABC中,AB===10,BP=2t,AQ=t,則AP=10﹣2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得t=,∴當(dāng)t=時(shí),PQ∥BC.(2)過點(diǎn)P作PD⊥AC于D,則有△APD∽△ABC,∴=,即=,∴PD=6﹣t,∴y=t(6﹣t)=﹣(t﹣)2+,∴當(dāng)t=時(shí),y有最大值為.(3)存在.理由:連接PP′,交AC于點(diǎn)O.∵四邊形PQP′C為菱形,∴OC=CQ,∵△APO∽△ABC,∴=,即=,∴OA=(5﹣t),∴8﹣(5﹣t)=(8﹣t),解得t=,∴當(dāng)t=時(shí),四邊形PQP′C為菱形.【題目點(diǎn)撥】本題考查四邊形綜合題、相似三角形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造相似三角形解決問題,學(xué)會(huì)理由參數(shù)構(gòu)建方程解決問題,屬于中考?jí)狠S題.19、方案二能獲得更大的利潤(rùn);理由見解析【解題分析】
方案一:由利潤(rùn)=(實(shí)際售價(jià)-進(jìn)價(jià))×銷售量,列出函數(shù)關(guān)系式,再用配方法求最大利潤(rùn);方案二:由利潤(rùn)=(售價(jià)-進(jìn)價(jià))×500p-廣告費(fèi)用,列出函數(shù)關(guān)系式,再用配方法求最大利潤(rùn).【題目詳解】解:設(shè)漲價(jià)x元,利潤(rùn)為y元,則方案一:漲價(jià)x元時(shí),該商品每一件利潤(rùn)為:50+x?40,銷售量為:500?10x,∴,∵當(dāng)x=20時(shí),y最大=9000,∴方案一的最大利潤(rùn)為9000元;方案二:該商品售價(jià)利潤(rùn)為=(50?40)×500p,廣告費(fèi)用為:1000m元,∴,∴方案二的最大利潤(rùn)為10125元;∴選擇方案二能獲得更大的利潤(rùn).【題目點(diǎn)撥】本題考查二次函數(shù)的實(shí)際應(yīng)用,根據(jù)題意,列出函數(shù)關(guān)系式,配方求出最大值.20、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解題分析】
(1)如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質(zhì)即可證明.【題目詳解】(1)證明:如圖1中,連接BD.∵點(diǎn)E,H分別為邊AB,DA的中點(diǎn),∴EH∥BD,EH=BD,∵點(diǎn)F,G分別為邊BC,CD的中點(diǎn),∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點(diǎn)四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點(diǎn)E,F(xiàn),G分別為邊AB,BC,CD的中點(diǎn),∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設(shè)AC與BD交于點(diǎn)O.AC與PD交于點(diǎn)M,AC與EH交于點(diǎn)N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點(diǎn):平行四邊形的判定與性質(zhì);中點(diǎn)四邊形.21、(1)3;(2)【解題分析】分析:(1)由題意得到三角形ADE為等腰直角三角形,在直角三角形DEB中,利用銳角三角函數(shù)定義求出DE與BE之比,設(shè)出DE與BE,由AB=7求出各自的值,確定出DE即可;(2)在直角三角形中,利用勾股定理求出AD與BD的長(zhǎng),根據(jù)tanB的值求出cosB的值,確定出BC的長(zhǎng),由BC﹣BD求出CD的長(zhǎng),利用銳角三角函數(shù)定義求出所求即可.詳解:(1)∵DE⊥AB,∴∠DEA=90°.又∵∠DAB=41°,∴DE=AE.在Rt△DEB中,∠DEB=90°,tanB==,設(shè)DE=3x,那么AE=3x,BE=4x.∵AB=7,∴3x+4x=7,解得:x=1,∴DE=3;(2)在Rt△ADE中,由勾股定理,得:AD=3,同理得:BD=1.在Rt△ABC中,由tanB=,可得:cosB=,∴BC=,∴CD=,∴cos∠CDA==,即∠CDA的余弦值為.點(diǎn)睛:本題考查了解直角三角形,涉及的知識(shí)有:銳角三角函數(shù)定義,勾股定理,等腰直角三角形的判定與性質(zhì),熟練掌握各自的性質(zhì)是解答本題的關(guān)鍵.22、(1)甲:25萬元;乙:28萬元;(2)三種方案;甲種套房提升50套,乙種套房提升30套費(fèi)用最少;(3)當(dāng)a=3時(shí),三種方案的費(fèi)用一樣,都是2240萬元;當(dāng)a>3時(shí),取m=48時(shí)費(fèi)用最??;當(dāng)0<a<3時(shí),取m=50時(shí)費(fèi)用最省.【解題分析】試題分析:(1)設(shè)甲種套房每套提升費(fèi)用為x萬元,根據(jù)題意建立方程求出其解即可;(2)設(shè)甲種套房提升m套,那么乙種套房提升(80-m)套,根據(jù)條件建立不等式組求出其解就可以求出提升方案,再表示出總費(fèi)用與m之間的函數(shù)關(guān)系式,根據(jù)一次函數(shù)的性質(zhì)就可以求出結(jié)論;(3)根據(jù)(2)表示出W與m之間的關(guān)系式,由一次函數(shù)的性質(zhì)分類討論就可以得出結(jié)論.(1)設(shè)甲種套房每套提升費(fèi)用為x萬元,依題意,得625解得:x=25經(jīng)檢驗(yàn):x=25符合題意,x+3=28;答:甲,乙兩種套房每套提升費(fèi)用分別為25萬元,28萬元.(2)設(shè)甲種套房提升套,那么乙種套房提升(m-48)套,依題意,得解得:48≤m≤50即m=48或49或50,所以有三種方案分別是:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套房提升49套,乙種套房提升1.套方案三:甲種套房提升50套,乙種套房提升30套.設(shè)提升兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度航空航天設(shè)備研發(fā)生產(chǎn)合作協(xié)議
- 醫(yī)用針頭購(gòu)買合同范例
- 充電樁安裝合同范本
- 2025年度影視化妝技術(shù)支持服務(wù)合同
- 假發(fā)買賣合同范本
- 保育員合同范本
- 刷墻協(xié)議合同范本
- 工程項(xiàng)目人員職責(zé)劃分-圖文
- 中介有解約合同范本
- 保潔勞務(wù)標(biāo)準(zhǔn)合同范本
- BMS基礎(chǔ)知識(shí)培訓(xùn)
- 質(zhì)保管理制度
- 2024年全國(guó)卷新課標(biāo)1高考英語試題及答案
- 2024年10月自考13003數(shù)據(jù)結(jié)構(gòu)與算法試題及答案
- 華為經(jīng)營(yíng)管理-華為激勵(lì)機(jī)制(6版)
- 2024年標(biāo)準(zhǔn)化工地建設(shè)管理實(shí)施細(xì)則(3篇)
- 2024新版《藥品管理法》培訓(xùn)課件
- 干燥綜合征診斷及治療指南
- 糧油廠食品安全培訓(xùn)
- 南京信息工程大學(xué)《教師領(lǐng)導(dǎo)力》2022-2023學(xué)年第一學(xué)期期末試卷
- 電力基本知識(shí)培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論