




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年上海市嘉定區(qū)封浜高級中學高一上數學期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12小題,共60分)1.設全集,集合,,則=()A. B.C. D.2.“學生甲在河北省”是“學生甲在滄州市”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.下列區(qū)間包含函數零點的為()A. B.C. D.4.設,是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是A.若,,,則B.若,,,則C.若,,,則D.若,,,則5.若函數是定義在上的偶函數,則()A.1 B.3C.5 D.76.若實數,滿足,則的最小值是()A.18 B.9C.6 D.27.下列函數是偶函數且值域為的是()①;②;③;④A.①② B.②③C.①④ D.③④8.已知,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.“密位制”是用于航海方面的一種度量角的方法,我國采用的“密位制”是密位制,即將一個圓周角分為等份,每一個等份是一個密位,那么密位對應弧度為()A. B.C. D.10.若函數滿足,則A. B.C. D.11.鄭州地鐵1號線的開通運營,極大方便了市民的出行.某時刻從二七廣場站駛往博學路站的過程中,10個車站上車的人數統(tǒng)計如下:70,60,60,60,50,40,40,30,30,10.這組數據的平均數,眾數,90%分位數的和為()A.125 B.135C.165 D.17012.已知,,,則a、b、c的大小關系是()A. B.C. D.二、填空題(本大題共4小題,共20分)13.的值為______.14.兩條平行直線與的距離是__________15.已知是定義在R上的周期為2的奇函數,當時,,則___________.16._____.三、解答題(本大題共6小題,共70分)17.已知角的頂點在坐標原點,始邊與x軸非負半軸重合,終邊經過點.(1)求的值;(2)求的值.18.已知的三個頂點是,直線過點且與邊所在直線平行.(1)求直線的方程;(2)求的面積.19.某城市地鐵項目正在緊張建設中,通車后將給市民出行帶來便利.已知某條線路通車后,地鐵的發(fā)車時間間隔(單位:分鐘)滿足.經測算,地鐵載客量與發(fā)車時間間隔相關,當時地鐵為滿載狀態(tài),載客量為人,當時,載客量會減少,減少的人數與的平方成正比,且發(fā)車時間間隔為分鐘時的載客量為人,記地鐵載客量為.(1)求的表達式,并求當發(fā)車時間間隔為分鐘時,地鐵的載客量;(2)若該線路每分鐘的凈收益為(元),問當發(fā)車時間間隔為多少時,該線路每分鐘的凈收益最大?每分鐘的最大凈收益為多少?20.已知函數.(1)解關于不等式;(2)若對于任意,恒成立,求的取值范圍.21.已知:,.設函數求:(1)的最小正周期;(2)的對稱中心,(3)若,且,求22.已知函數,且(1)證明函數在上是增函數(2)求函數在區(qū)間上的最大值和最小值
參考答案一、選擇題(本大題共12小題,共60分)1、B【解析】根據題意和補集的運算可得,利用交集的概念和運算即可得出結果.【詳解】由題意知,所以.故選:B2、B【解析】直接利用充分條件與必要條件的定義判斷即可.【詳解】因為若“學生甲在滄州市”則“學生甲一定在河北省”,必要性成立;若“學生甲在河北省”則“學生甲不一定在滄州市”,充分性不成立,所以“學生甲在河北省”是“學生甲在滄州市”的必要不充分條件,故選:B3、C【解析】根據零點存在定理,分別判斷選項區(qū)間的端點值的正負可得答案.【詳解】,,,,,又為上單調遞增連續(xù)函數故選:C.4、D【解析】,,故選D.考點:點線面的位置關系.5、C【解析】先根據偶函數求出a、b的值,得到解析式,代入直接求解.【詳解】因為偶函數的定義域關于原點對稱,則,解得.又偶函數不含奇次項,所以,即,所以,所以.故選:C6、C【解析】,利用基本不等式注意等號成立條件,求最小值即可【詳解】∵,,∴當且僅當,即,時取等號∴的最小值為6故選:C【點睛】本題考查了利用基本不等式求和的最小值,注意應用基本不等式的前提條件:“一正二定三相等”7、C【解析】根據奇偶性的定義依次判斷,并求函數的值域即可得答案.【詳解】對于①,是偶函數,且值域為;對于②,是奇函數,值域為;對于③,是偶函數,值域為;對于④,偶函數,且值域為,所以符合題意的有①④故選:C.8、B【解析】先由,得到,再由充分條件與必要條件的概念,即可得出結果.【詳解】由解得,所以由“”能推出“”,反之,不能推出;因此“”是“”必要不充分條件.故選:B.【點睛】本題主要考查命題的必要不充分條件的判定,熟記充分條件與必要條件的概念即可,屬于??碱}型.9、B【解析】根據弧度制公式即可求得結果【詳解】密位對應弧度為故選:B10、A【解析】,所以,選A.11、D【解析】利用公式可求平均數和90%分位數,再求出眾數后可得所求的和.【詳解】這組數據的平均數為,而,故90%分位數,眾數為,故三者之和為,故選:D.12、D【解析】借助中間量比較即可.詳解】解:根據題意,,,,所以故選:D二、填空題(本大題共4小題,共20分)13、【解析】利用對數恒等式直接求解.【詳解】解:由對數恒等式知:=2故答案為2.【點睛】本題考查指數式、對數式化簡求值,對數恒等式公式的合理運用,屬于基礎題.14、【解析】直線與平行,,得,直線,化為,兩平行線距離為,故答案為.15、##【解析】根據函數的周期和奇偶性即可求得答案.【詳解】因為函數的周期為2的奇函數,所以.故答案為:.16、【解析】利用誘導公式變形,再由兩角和的余弦求解【詳解】解:,故答案為【點睛】本題考查誘導公式的應用,考查兩角和的余弦,是基礎題三、解答題(本大題共6小題,共70分)17、(1);(2)8.【解析】(1)根據三角函數的定義即可求得答案;(2)根據三角函數的定義求出,然后用誘導公式將原式化簡,進而進行弦化切,最后求出答案.【小問1詳解】由題意,,所以.【小問2詳解】由題意,,則原式.18、(1)(2)【解析】(1)利用線線平行得到直線的斜率,由點斜式得直線方程;(2)利用點點距求得,利用點線距求得三角形的高,從而得到的面積.試題解析:(1)由題意可知:直線的斜率為:,∵,直線的斜率為-2,∴直線的方程為:,即.(2)∵,點到直線的距離等于點到直線的距離,∴,∴的面積.19、(1),人(2)當發(fā)車時間間隔為分鐘時,該線路每分鐘的凈收益最大,每分鐘的最大凈收益為元【解析】(1)由題意分別寫出與時,的表達式,寫成分段函數的形式,可得的表達式,可得的值;(2)分別求出時,時,凈收益為的表達式,并求出其最大值,進行比較可得凈收益最大及收益最大時的時間.【詳解】解:當時,當時,設解得,所以,所以(人)當時,當時當時,當且僅當時,即時,取到最大值.答:的表達式為當發(fā)車時間間隔為分鐘時,地鐵的載客量為人.當發(fā)車時間間隔為分鐘時,該線路每分鐘的凈收益最大,每分鐘的最大凈收益為元.【點睛】本題主要考查分段函數解析式的求解及函數模型的實際應用,及利用基本不等式求解函數的最值,綜合性大,屬于中檔題.20、(1)當時,不等式的解集是當時,不等式的解集是當時不等式的解集是(2)【解析】(1)將不等式,轉化成,分別討論當時,當時,當時,不等式的解集.(2)將對任意,恒成立問題,轉化為,恒成立,再利用均值不等式求的最小值,從而得到a的取值范圍.【詳解】(1)因為不等式所以即當時,解得當時,解得當時,解得綜上:當時,不等式的解集是當時,不等式的解集是當時不等式的解集是(2)因為對于任意,恒成立所以,恒成立所以,恒成立令因為當且僅當,即時取等號所以【點睛】本題主要考查了含參一元二次不等式的解法以及恒成立問題,還考查了轉化化歸的思想及運算求解的能力,屬于中檔題.21、(1);(2)(k∈Z);(3)或.【解析】(1)解:由題意,,(1)函數的最小正周期為;(2),得,所以對稱中心;(3)由題意,,得或,所以或點睛:本題考查三角函數的恒等關系的綜合應用.本題中,由向量的數量積,同時利用三角函數化簡的基本方法,得到,利用三角函數的性質,求出周期、對稱中心等22、(1)證明見解析;(2)的最大值為,最小值為.【解析】(1)根據求出,求得,再利用函數單調性的定義,即可證得結論;(2)根據在上的單調性,求在上的最值即可.【詳解】解:(1)因為,可得,解得,所以,任取,則,因為,所以,可得,即且,所以,即,所以在上是增函數;(2)由(1)知,在上是增函數,同理,任取時,,其中,故
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年創(chuàng)意燈具風險評估與管理報告
- 2025年開啟渦輪漿項目投資可行性研究分析報告
- 科技企業(yè)中的激勵策略與員工成長
- 石墨在新能源領域的應用及前景
- 科技與藝術的結合現代科技在珠寶店陳列中的應用
- 2025年中國電磁制動三相異步電動機市場調查研究報告
- 2025年中國液壓自動控制車輛路障市場調查研究報告
- 餐飲外包協(xié)議合同范本
- 2025年中國日夜型攝像機市場調查研究報告
- 購買果地合同范本
- FOCUS-PDCA改善案例-提高術前手術部位皮膚準備合格率醫(yī)院品質管理成果匯報
- 2023年智能網聯(lián)汽車產業(yè)洞察暨生態(tài)圖譜報告1
- 《中醫(yī)婦科總論》課件
- 事業(yè)單位考試綜合應用能力(綜合管理類A類)試卷及解答參考
- 申論公務員考試試題與參考答案(2024年)
- 《幼兒行為觀察與分析案例教程》教學教案
- 小學科學教育課程實施方案
- DB11T 1035-2013 城市軌道交通能源消耗評價方法
- 供應室課件大全
- 銀行存管三方協(xié)議書
- 2024義務教育道德與法治課程標準(2022版)
評論
0/150
提交評論