四川省眉山市仁壽第一中學(xué)校(北校區(qū))2023-2024學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題_第1頁(yè)
四川省眉山市仁壽第一中學(xué)校(北校區(qū))2023-2024學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題_第2頁(yè)
四川省眉山市仁壽第一中學(xué)校(北校區(qū))2023-2024學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題_第3頁(yè)
四川省眉山市仁壽第一中學(xué)校(北校區(qū))2023-2024學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題_第4頁(yè)
四川省眉山市仁壽第一中學(xué)校(北校區(qū))2023-2024學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高2023級(jí)半期考試數(shù)學(xué)試卷全卷滿分150分,考試時(shí)間120分鐘.一、單項(xiàng)選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知集合,集合,則()A. B. C. D.【答案】B【解析】【分析】直接根據(jù)并集的定義求解即可.【詳解】,,.故選:B.2.“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件【答案】A【解析】【分析】通過(guò)求出的范圍,再通過(guò)充分性和必要性的概念得答案.【詳解】由得或,因?yàn)榭赏瞥龌?,滿足充分性,或不能推出,不滿足必要性.故“”是“”的充分不必要條件.故選:A.3.已知,則()A. B.1 C. D.【答案】B【解析】【分析】利用同角三角函數(shù)的基本關(guān)系式即可求得結(jié)果.【詳解】,故選:B.4.已知正實(shí)數(shù)滿足,則的最小值為()A.8 B.17 C.20 D.25【答案】D【解析】【分析】利用,展開后通過(guò)基本不等式求最小值.【詳解】,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.故選:D.5.如圖所示,在中,,則()A. B.C. D.【答案】A【解析】【分析】根據(jù)向量的線性運(yùn)算法則,準(zhǔn)確化簡(jiǎn)、運(yùn)算,即可求解.【詳解】根據(jù)向量的線性運(yùn)算法則,可得:.故選:A6.已知,則()A. B. C. D.【答案】D【解析】【分析】利用輔助角公式求得,然后利用二倍角公式計(jì)算即可.【詳解】,則,則,故選:D.7.已知函數(shù),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.【答案】B【解析】【分析】根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn),從而得出值域.【詳解】.故值域?yàn)椋蔬x:B.8.已知函數(shù),若恰有3個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.【答案】A【解析】【分析】恰有3個(gè)零點(diǎn),即的圖象與的圖象恰有3個(gè)不同的交點(diǎn),借助的圖象求解即可.【詳解】設(shè),則恰有3個(gè)零點(diǎn),即的圖象與的圖象恰有3個(gè)不同的交點(diǎn).的圖象如圖所示.不妨設(shè),所以,所以,即,即,所以,所以,故選:A.二、多項(xiàng)選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)的得5分,部分選對(duì)的得2分,有選錯(cuò)的得0分.9.已知冪函數(shù)的圖象經(jīng)過(guò)點(diǎn),則下列說(shuō)法正確的是()A. B.是奇函數(shù)C.是偶函數(shù) D.在上單調(diào)遞增【答案】ACD【解析】【分析】根據(jù)冪函數(shù)經(jīng)過(guò)的點(diǎn)得其表達(dá)式,結(jié)合冪函數(shù)的性質(zhì)即可根據(jù)選項(xiàng)逐一求解.【詳解】因?yàn)楹瘮?shù)的圖象過(guò)點(diǎn),所以,即,所以,故A正確:,定義域?yàn)?,關(guān)于原點(diǎn)對(duì)稱,所以,所以是偶函數(shù),故B錯(cuò)誤,C正確:又,所以在上單調(diào)遞減,又是偶函數(shù),所以在上單調(diào)遞增,故D正確.故選:ACD.10.已知,則下列選項(xiàng)中能使成立的是()A. B. C. D.【答案】AC【解析】【分析】利用不等式的性質(zhì)逐一判斷即可.【詳解】對(duì)于A:,,,,故A正確;對(duì)于B:,,,,故B錯(cuò)誤;對(duì)于C:,,故C正確;對(duì)于D:,,,,故D錯(cuò)誤;故選:AC.11.已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),,則下列說(shuō)法正確的是()A.B.當(dāng)時(shí),C.在上單調(diào)遞增D.不等式的解集為【答案】BD【解析】【分析】由奇函數(shù)的定義可求解A、B;用特值法可判斷C;分段求解不等式可判斷D.【詳解】,故A錯(cuò)誤;當(dāng)時(shí),,所以,故B正確;因?yàn)?,,又,故C錯(cuò)誤;當(dāng)時(shí),,解得;當(dāng)時(shí),,無(wú)解;當(dāng)時(shí),,所以不等式的解集為,故D正確.故選:BD.12.已知函數(shù)的部分圖象如圖所示,則下列說(shuō)法正確的是()A.B.的單調(diào)減區(qū)間為C.圖象的一條對(duì)稱軸方程為D.點(diǎn)是圖象的一個(gè)對(duì)稱中心【答案】ABC【解析】【分析】由題可知,解得,又在的圖象上,結(jié)合得,得,即可判斷A;根據(jù)三角函數(shù)的性質(zhì)可判斷B、C、D.【詳解】由題可知,所以,解得,所以,又在的圖象上,所以,所以,所以,又,所以,所以,故A正確;令,解得,所以的單調(diào)減區(qū)間為,故B正確;令,解得,當(dāng)時(shí),,故C正確;令,解得,令,則,故D錯(cuò)誤.故選:ABC.三、填空題:本題共4小題,每小題5分,共20分.13.______.【答案】【解析】【分析】根據(jù)誘導(dǎo)公式和特殊角的三角函數(shù)值得出答案.【詳解】.故答案為:.14.已知函數(shù)的定義域?yàn)?,則的定義域?yàn)開_____.【答案】【解析】【分析】通過(guò)函數(shù)的定義域可得中,解出即可.【詳解】由函數(shù)的定義域?yàn)榈茫瑢?duì)于有,,即的定義域?yàn)?故答案為:.15.已知函數(shù),則______.【答案】##【解析】【分析】先由計(jì)算出,借助與關(guān)系的判斷函數(shù)的性質(zhì),借助函數(shù)的性質(zhì)即可解決問題.【詳解】由,則,有,故,故答案為:.16.已知函數(shù),則的解集為______.【答案】【解析】【分析】根據(jù)函數(shù)奇偶性的定義可得為偶函數(shù),根據(jù)解析式直接判斷函數(shù)的單調(diào)性,進(jìn)而結(jié)合奇偶性與單調(diào)性求解即可.【詳解】由,,則,所以函數(shù)為偶函數(shù),當(dāng)時(shí),,因?yàn)楹瘮?shù),均在上單調(diào)遞增,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,所以由,得,解得或,即的解集為.故答案為:.四、解答題:本題共6小題,共70分.解答應(yīng)寫出必要的文字說(shuō)明、證明過(guò)程及演算步聚.17.求值:(1);(2)【答案】(1)(2)【解析】【分析】第一小問借助指數(shù)與對(duì)數(shù)的運(yùn)算性質(zhì)即可得到;第二小問借助兩角和的正弦公式將拆開即可得到.【小問1詳解】原式.【小問2詳解】原式.18.已知向量與的夾角為,且,.向量與共線,(1)求實(shí)數(shù)的值;(2)求向量與的夾角.【答案】(1)(2)【解析】【分析】(1)根據(jù)共線向量定理,即可求解;(2)根據(jù)向量夾角公式,,再代入數(shù)量積的運(yùn)算公式,即可求解.【小問1詳解】若向量與共線,則存在實(shí)數(shù),使得,則,則;【小問2詳解】由(1)知,,,,,,所以,且,所以.19.設(shè)函數(shù).(1)求的圖象的對(duì)稱軸方程和對(duì)稱中心的坐標(biāo);(2)求在上的最值.【答案】(1);;(2),.【解析】【分析】(1)利用三角恒等變換化簡(jiǎn),再利用三角函數(shù)的性質(zhì)求得答案;(2)利用函數(shù)的單調(diào)性求出最值.小問1詳解】因?yàn)?,令,解得,所以的?duì)稱軸方程為,令,得,可得函數(shù)圖象的對(duì)稱中心的坐標(biāo)為;【小問2詳解】因?yàn)椋?,令,解得,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,,,故.20.已知.(1)當(dāng)時(shí),求不等式的解集;(2)已知函數(shù)的定義域?yàn)?,求?shí)數(shù)的取值范圍.【答案】(1)(2)【解析】【分析】(1)根據(jù)不含參的一元二次不等式的解法即可求解;(2)當(dāng)時(shí)不等式成立;當(dāng)時(shí),根據(jù)一元二次不等式恒成立,列出不等式組,解之即可.【小問1詳解】當(dāng)時(shí),,或,則的解集為;【小問2詳解】由題意可知恒成立.①當(dāng),即時(shí),不等式為對(duì)任意恒成立,符合題意;②當(dāng),即時(shí),對(duì)于任意恒成立,只需,解得,所以.綜合①②可得實(shí)數(shù)的取值范圍是.21.某水產(chǎn)公司擬在養(yǎng)殖室修建三個(gè)形狀、大小完全相同的長(zhǎng)方體育苗池.其平面圖如圖所示,每個(gè)育苗池的底面積為200平方米,深度為2米,育苗池的四周均設(shè)計(jì)為2米寬的甬路.設(shè)育苗池底面的一條邊長(zhǎng)為x米(),甬路的面積為S平方米.(1)求S與x之間的函數(shù)關(guān)系式;(2)已知育苗池四壁造價(jià)為200元/平方米,池底的造價(jià)為600元/平方米,甬路的造價(jià)為100元/平方米,若不考慮其他費(fèi)用,求x為何值時(shí),總造價(jià)最低,并求最低造價(jià).【答案】(1),(2)米時(shí),總造價(jià)最低,最低總造價(jià)為459200元.【解析】【分析】(1)根據(jù)題意得到養(yǎng)殖室的總面積,從而表達(dá)出函數(shù)關(guān)系式;(2)在第(1)問的基礎(chǔ)上,表達(dá)出總造價(jià)關(guān)于的函數(shù)關(guān)系式,并利用基本不等式求出最小值.【小問1詳解】由題意可得每個(gè)育苗池另一邊長(zhǎng)為米,則,;【小問2詳解】設(shè)總造價(jià)為元,則,,其中,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,故,所以米時(shí),總造價(jià)最低,最低總造價(jià)為459200元.22.已知函數(shù),其中,若將的圖象向左平移個(gè)單位長(zhǎng)度,得到的圖象,且函數(shù)為奇函數(shù).(1)求函數(shù)的解析式;(2)若關(guān)于的方程在區(qū)間上有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.【答案】(1)(2)【解析】【分析】(1)化簡(jiǎn),利用圖象平移規(guī)律得,由結(jié)合求得,即可得解;(2)令,方程可化為,令,,問題轉(zhuǎn)化為關(guān)于的方程在區(qū)間和上分別有一個(gè)實(shí)數(shù)根,或有一個(gè)實(shí)根為1,另一實(shí)根在區(qū)間上,分類討論求解即可.小問1詳解】,.又是奇函數(shù),所以,有,可得,整理得,由,有,得,由,可得,,經(jīng)檢驗(yàn)符合題意,.【小問

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論