




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Entransy[
]:
ItsApplicationinHeatTransfer
and
ThermodynamicSystemXin-gangLiangSchoolofAerospace,TsinghuaUniversity1ContentPart1:
Whatisentransy?Part2:OptimizationofheatconductionPart3:ThedifferencebetweenentransyoptimizationandentropyoptimizationPart4:Applicationto
heatexchanger(HX)optimizationPart5:ApplicationtothermodynamicsystemPart6:Anattempt:entransyanalysisofthermodynamiccycle--entransylossPart7Arguments2Part1:
Whatisentransy?
[火積]?3Definition-entransyInternalenergySpecificheattemperatureBodymassZYGuoetal,Entransy–Aphysicalquantitydescribingheattransferability,Int.J.HeatMassTransfer,2007,50:2545–2556.4Physicalmeaning“Potentialenergy”ofheatinanobject;Theabilitytoreleaseheatfromanobject;Thelargestentransythatabodycouldreleaseis?UT.PotentialenergyofwaterinatankentransyHA56HotstonepotforcookingTemperatureHeatcapacityBothfactorsareimportant,notsingleone.PhysicalmeaningAnalogybetweenelectrical&heatconduction7Electricalcond.HeatconductionPotentialUe
[V]Uh=T
[K]FlowI
[C/s]Qh
[J/s]Flux
[C/m2s]
[J/m2s]Resistance
Re[
]Rh
[sK/J]Law
Uh=TElectricalCharge/storedheatQveQvh
=
McvTCapacity
Ce
=
Qve
/
Ue
Ch
=
Qvh
/
UhPotentialenergyEe=
QveUe
/2Potentialenergyofheat?PhysicalmeaningPotentialenergyofcharge8“Potentialenergy”ofheatinabodyatatemperaturePotentialenergyofchargeinacapacitance
ZYGuoetal,Entransy–Aphysicalquantitydescribingheattransferability,Int.J.HeatMassTransfer,2007,50:2545–2556.entransyInternalenergy
massPhysicalmeaningEe=QveUe
/2
Whyisthequantity,G, calledentransy?Clausiushadcoineden-tropy(熵)forS=
Q/Tbecauseitpossesboththenatureofenergyandtransformationability.en
---prefixofenergy;tropy---rootoftransformationEn-transyforwascoinedforGh=UT/2becauseitpossesboththenatureofenergyandtransferability.en
---prefixofenergy;transy--rootoftransportGh=UT/2
wascalledheattransportpotentialcapacity9Whathappenstoentransyifheatistransferred?ItcanbeprovedInitialstatesAfterequilibrium10EntransydissipationThetotalentransyisreducedwhenheatistransferredThechangeinentransyduetoheattransferiscalledentransydissipation
11EntransydissipationWhathappensifheatistransferred?Itcanbeproved:anyspontaneousheattransferwillresultinentransydecreaseforisolatedsystem.Hence,entransydissipationcouldbe
anthermeasureoftheirreversibilityforheattransport12孤立系統(tǒng)熵增原理Entransyflow13Qf:heatexchangeatconstanttemperatureTWhenQfistransferredfromTH
toTL,
theentransydissipationisEntransyflow:Whyentransy?Anyadvantage?Anyapplicationofconvenience?14Whyentransy?Enhancement(強(qiáng)化)Increasingheattransferratewithinputinpower,materials,etc.Optimization(優(yōu)化)BestheattransferperformanceunderfixedinputAnyprinciple?Howtooptimize?15Whyentransy?16Constructaltheory:ABejanGivingprescribedconstructandthenoptimizingaspectratio.Minimizingthelargesttemperaturedifference.Onedimensionconductionassumptionintheconstruct.Effectiveforsymmetricstructure.OptimizationmethodsHowtodoiftherearemorethantwooutlettemperaturesorifthedomainiscomplex?Whyentransy?17Entropygeneration(EG)MinimizationBelief:Lessentropygeneration,betterheattransfer;TheNewtoncoolinglawQ=AhTforfixedQ,Tbecomesmallerunderimprovement,thenlessentropygenerationManysuccessfulapplicationsOptimizationmethodsDifferentopinionson
entropygenerationminimizationoptimization18entropygenerationlossinheat-workconversion,orexergy[火用];focusonirreversibilityfromtheviewpointofheat-workconversion.Heatistransportednotfordoingworkinmanyapplications.However,thereareConflictson
entropygenerationminimizationoptimization19TheNewtoncoolinglawQ=
AhT:ifTfixed,enhancementoroptimizationwillmakeheatexchangeincreasedQ;EGwillincreaseeitherLargerEGcorrespondslargerheattransferrate?HoweverConflictson
Minimumentropygeneration(EG)optimization20TheparadoxinHeatexchangeroptimizationBejan:effectivenessdoesnotalwaysincreaseswithdecreasingEGmonotonicallyShah:18typesofHXs,notmonotonicrelationbetweenEGandeffectiveness.HoweverConflictson
Minimumentropygeneration(EG)optimization21TheparadoxinheatexchangeroptimizationHoweverEffectivenessisnotamonotonicfunctionofEGCounterflowHXEntransycouldbeahelpondealingwithheattransferoptimization?22Part2
Optimizationofheatconduction
23EntransybalanceequationEnergyeq.HeatsourceHeatfluxMultipleTintegrateoverthewholevolume24EntransybalanceequationForconstantcvEntransyperunitvolumeFromtheGausstheorem25EntransybalanceequationEntransyvariationwithtime-EntransydissipationEntransyvariationduetoboundaryheatexchange
Entransyproductionduetoheatsource
26Entransybalanceequationentransyvariationwithtime=netentransyflowintovolumethroughboundary+netentransyduetoheatsource+entransydissipation27Entransybalanceequation28Atsteadystate,withoutheatsource00orEntransydissipationrate=entransyflowintothevolumethroughboundary
-entransyflowoutofthevolumethroughboundaryGin-Gout=
GRelationbetweenheattransfer&entransydissipationNetheatexchangethoughboundaryisrelatedtotheentransydissipationinthevolume!EntransydissipationNetentransyflowintoVthoughboundary2930Steadystatewithoutheatsourcewhereboundaryflux-weightedtemperaturedifferenceQ0:totalnetheattransportbetweenthesourceandsinkboundaryForgivenboundaryflowRelationbetweenheattransfer&entransydissipationqin:heatfluxintoboundaryareaSqin
qout:heatfluxoutofboundaryareaSqout
31SteadystatewithoutheatsourceMinimumentransydissipation
smallesttemperaturedifferenceForgivenboundaryflowRelationbetweenheattransfer&entransydissipation32SteadystatewithoutheatsourceForgivenboundarytemperatureRelationbetweenheattransfer&entransydissipationMaximumentransydissipation
largestheatexchange33MaximumentransydissipationprincipleforgiventemperatureMinimumentransydissipationprincipleforgivenheatfluxEntransydissipationextremumprinciplesforheatconductionRelationbetweenheattransfer&entransydissipationOptimizationapplicationHowtodistributegoodconductingmaterialstoobtainlowestaveragetemperature?Volumetopointheatconduction,steadysateUniformheatsourceThereisonlyoneoutletattemperatureT0Limitedgoodconductivity34OptimizationapplicationEntransybalanceeq.VolumetopointheatconductionQisthetotalheatgeneratedinV,whichisgiven35OptimizationapplicationEntransybalanceeq.VolumetopointheatconductionEntransydissipationinVNetentransyflowintoVSmallerentransydissipation,loweraveragetemperature.Howtofindtheoptimaltemperaturedistributionwithlimitationongoodconductingmaterials?36MinimumConstraintPurpose:findtheminimumentransydissipationundertheconstraint37OptimizationapplicationVolumetopointheatconductionRequirementsPurpose:findtheminimumentransydissipationundertheconstraint38OptimizationapplicationVolumetopointheatconductionConstituteaLagrangefunctionwiththeconstraintoflimitinggoodconductingmaterialsPursuingacalculusofvariation,takingconductivitykasafunction.39OptimizationapplicationVolumetopointheatconductionWehaveThisistherule/principletodistributegoodconductingHowtousethisrule?40OptimizationapplicationVolumetopointheatconductionHowtousetherule(4)Returntostep(2)untilallthegoodconductingmaterialsareusedup.(1)Fillinthedomainwithbasematerials,lowconductivity;(2)Solvetheenergyequationtoobtainthetemperaturefieldandheatfluxfield;(3)Putagoodconductingmaterialsattheplacewherethetemperaturegradientislargest;Thereareotherimprovedmethodsofputtinggoodconductingmaterials41OptimizationapplicationVolumetopointheatconductionThestructuredependsontheconductivityratio,fractionofgoodconductingmaterialsnon-uniformheatsourceQQ12.5%oftotalVolumeOptimizationapplicationVolumetopointheatconduction42Thestructuredependsontheconductivityratio,fractionofgoodconductingmaterialsYoucanusedifferentprocedurebasedontheruleandcouldobtaindifferentstructuresOptimizationapplicationVolumetopointheatconduction43Entransydissipation-basedthermalresistanceTheentransydissipationextremumprinciplesdivideintotwocases,complex.MaximumentransydissipationprincipleforgiventemperatureMinimumentransydissipationprincipleforgivenheatfluxEntransydissipationextremumprinciplesforheatconductionCouldwemakeanimprovementandexpressthemmoresimply?44ThermalresistanceConventionaldefinitionofthermalResistance:
R=
T/Q
Withentransydissipation,wecandefinedeffectiveresistanceforx-DsystemT1T2adiabaticT3?Itcanonlybedefinedfor1-Dsystem
Ifmanytemperatures?45Resistancewasdefinedbasedonentransydissipationandthetotalnetheatexchange.WeightedTdifferenceEntransyDissipationNetheatexchangebetweensource&sinkboundariesEntransy-dissipation-basedthermalresistanceEntransydissipation-basedthermalresistance46Entransybalanceeq.atsteadystateForfixedT,largerentransydissipation,largerheatexchange,smallerthermalresistance.ForfixedQ,smallerentransydissipation,smallertemperaturedifference,smallerthermalresistance.47Entransydissipation-basedthermalresistanceMinimumresistanceprincipleMaximumentransydissipationprinciple(forgiventemperature)Minimumentransydissipationprinciple(forgivenheatflux)Heatalwaysconductsviaminimumthermalresistance!48Part3
Thedifferencebetweenentransyoptimizationandentropyoptimization
49EntropyForanyreversiblecycleentropyEntropychangeforanyprocessfromstate1tostate2Entropygeneration50Entropybalanceeq.forheattransferEntropychangerateInternalentropygenerationEntropyflowthoughboundaryandheatsourceAtsteadystateWithoutheatsource51Entropybalanceeq.forheattransferForheatconductionthenEntropychangerateentropygenerationEntropyflowthoughboundaryEntropyduetoheatsource52Entropygenerationandheattransfer53qistheheatfluxthoughboundaryqisthatinnormaldirectionFromentropybalanceeq.QnetisthenetheatflowbetweenheatsourceandsinkboundaryEntropygenerationandheattransfer54EntropyoptimizationEntransyoptimizationForprescribedheatflowSmallerentropygeneration,SmallerentransydissipationSmallerSmallerEntropygenerationandheattransfer55EntropyoptimizationEntransyoptimizationForprescribedboundarytemperaturelargerentropygeneration,largerentransydissipationLargerQnet
LargerQnetEntropygenerationoptimizationForgivenboundaryheatflowminimizingentropygenerationistoreduce(1/T)(objective),notT;minimizingentransydissipationistoreduce
T(objective).Forgivenboundarytemperaturesmaximizing(notminimizing)entropygenerationistoincreaseheattransferrate,notT;minimizingentransydissipationistoreduceT.56Heattransferprocesscanbedividedintotwocategoriesaccordingtotheir
purposes:ClassificationofheattransferprocessOneisforheat-workconversionanditsirreversibilityismeasuredbytheentropygenerationrate.Anotherisforheatingorcoolingobjects
anditsirreversibilityismeasuredbytheentransydissipationrate57Correspondingtotwopurposesofheattransfer,therearetwokindsofoptimizationprinciplesforheattransferTheprincipleofminimumentropygenerationforoptimizationofheattransferforheat-workconversion.Theprinciple
ofminimumentransydissipation-basedthermalresistanceforoptimizationofheattransferforobjectheating.5859EntropyoptimizationFormaLagrangefunctionwiththeconstraintoflimitinggoodconductingmaterialsVariationwithrespecttoTRulestoarrangegoodconductingmaterialsResultcomparisonVariationwithrespecttokEntransyoptimizationResultcomparison<
averageT:150.8K
AverageT:
51.6
K
Min.entropygeneration:increaseT,reduce
(1/T);Min.entransydissipation:reduce
T.Entropyoptimization60TemperaturedistributionReduceentropygenerationreducetheabilitylossindoingworkResultcomparisonEntransyopt.Entropyopt.<averageT:150.8K
AverageT:
51.6
K
61優(yōu)化結(jié)果比較
resultΦh
/(W?K)Sgen/(W/K)Tm/KTmax/K/(1/K)Entransydissipationopt5.5×104100.751.683.02.2×10-2Entropymini.Opt.1.58×10581.7150.8194.97.1×10-3TheoptimizationobjectivesaredifferentforentransydissipationoptimizationandentropygenerationoptimizationResultcomparison62purposeheat-workconv.heating/coolingirreversibilityentropygenerationentransydissipationopt.objectiveconver.Efficiency
(1/T)transferperformance
Topt.principleminimumentropygenerationrateminimumthermalresistanceprocesstendency
dS>0
dG<0criterionofequi.
dS=0
dG=0HeattransferentropyentransyComparison:entropyandentransy63Whatdoyouthinkifentropyflowandgenerationiswroteinthisway?EntropygenerationEntropyflowEntransyflowEntransydissipation64Part4
Applicationto
heatexchanger(HX)optimization
65SomeconceptsforheatexchangerParallelflowheatexchangerCounterflowheatexchangerΔtmaxΔtmin0AtΔtmaxΔtmin0At66SomeconceptsforheatexchangerCrossflowheatexchanger67SomeconceptsforheatexchangerTheLog-MeanTemperatureDifferenceMethodΔtmaxΔtmin0AtΔtmaxΔtmin0AtHeatexchangedbetweenhotandcoldstreams(counter/parallel)K
isheattransfercoefficient,Aisareabetweenhotandcoldstream68Someconceptsforheatexchanger(HX)EffectivenessHeatexchangedxMaxpossibleheatexchange
NTU:NumberofTransferUnitsC=mc,Heatcapacityflowrateforhotandcoldstreams;mismassflowrate,cisspecificheat,h—hotstream,c—coldone.69ConventionalmethodsforthedesignofheatexchangersParallelandcounter-flowheatexchangersConvient!ConventionalHXdesigningmethodLog-MeanTemperatureDifferenceMethod(LMTD)Cross-flowandmultipassheatexchangersCorrectionfactor
isunavoidable!70ConventionalmethodsforthedesignofheatexchangersConventionalHXdesigningmethodTheEffectiveness---NTUmethodComplexexpressionsofNTUParallel:Counter-flow:71Couldwedosomethingwiththeconceptofentransy?72EntransyDissipationinheatexchangersEntransydissipationinaheatexchangerEntransydissipationestimatestheirreversibilityofheattransferinHXs.Local/totalentransydissipationrateforheattransferEntransydissipationforHX73TemperaturevariationsindifferentheatexchangersParallelflowHXCounterflowHXΔtmaxΔtmin0AtΔtmaxΔtmin0AtNonlineartemperaturedistributionalongtheheattransfersurface.TemperaturedistributioninHXHotstreamHotstreamcoldstreamcoldstream74ΔtmaxΔtmin0Qt0LineartemperaturevariationversusthetotalheattransferrateΔtmaxΔtminQtT-QdiagramandthermalresistancetemperaturevariationsvstotalheattransferrateParallelflowHXCounterflowHXEntransyDissipationEntransyDissipationThermalresistancehighlightedarea75TheinfluencefactorsonHXefficiency76
UnbalancedflowdifferentheatcapacityrateIfthesame
Non-optimalflowarrangementNon-counterflowForparallelflow,thereisalimitifonlyincreasearea.Counterflow:largerTalongflowdirection,lessarea
FiniteNTU(KA/Cmin)IncreasingareaanotherlimitTThTcQTThTcQTheentransydissipation(areasurroundedbyTcurves)becomeslesswithimprovingheatexchangeforgiveinletparameters77Applicationindatacentercoolinganalysis10121416182022242628-0.2500.250.50.7511.251.5Temperature/CHeatq/WTh,inQ0.5QTh,outTc,inTc,outTm,hTm,cToreducepowerconsumption,heatpipecanbeusedtoreplacetheinterloopcirculationIndoorairoutdoorairwaterHowtouseheatpipe?OneheatpipeTQTwoheatpipesatdifferenttemperature?Bettermatchinflowarrangement,betterperformanceorlessarea.78FlowarrangementisnotsatisfactoryIndoorairoutdoorairHeatpipeOutdoorairIndoorairHeatpipecondenserevaporatorDividetheindoor&outdoorHXsintotwoparts,usingtwoheatpipesworkingatdifferenttemperaturedatacentercoolinganalysis79Howtofindthekeypointofoptimizationforathermalsystemiftheinputheatisfixed?FindthedissipationdistributionbyT-QplotornumericalsimulationDeterminewheretheentransydissipationisdominantandtrytoreduceit:Betterarrangement,avoidingmixing,etc.80Aninstance:Xian-Yangairport81ConventionalairsupplyNo!Aninstance:Xian-Yangairport82Floorcooling:sunradiationisdirectlyremoved,avoidingmixingwithair;departurehall:coolairissuppliedatgroundlevel,hotairgoesoutatroofEntransydissipationbasedthermalresistance(EDTR)fordifferentHXParallelHXCounter-flowHXTEMAE-typeheatexchanger83TheinfluencefactorsofheatexchangerefficiencyInfluencefactorsRelatedquantitiesTypeofHeatexchangerThermalconductanceofheatexchangersHeatcapacitiesofhotandcoldfluidAllthefactorsarecontainedintheexpressionofEDTR!84AdvantagesofEDTRmethodEDTRdirectlyconnectsgeometricalstructuresandboundaryconditionstoentransydissipation.Differenttypesofheatexchangersshareageneralformulaformostheatexchangers.EDTRisconvenientfortheoptimizationofheatexchanger(networks).85Relation:resistance~effectivenessSmallerresistance,largereffectivenessifheatcapacityflowratesaregiven.or86Example1:areadistribution
ofHXsHotstreamColdstreamHX1HX2Inlettemperatureandheatcapacityflowratearegivenisknown,thesumofareaofHXs:A1+A2=constObjective:thesumofheatexchangedislargestHowtodistributeA1/A?K87Resistance
=sumofentransydissipationinHX1andHX2dividedbythesumoftotalheatexchangeThetotalentropygenerationduetoheatexchangeTheoutlettemperaturecanbeobtainedbyenergybalanceequations88Example1:ResultMinresistance
~
MaxheatexchangeMinentropygeneration
~?Heatexchange89Example2:two-streamHXs(networks)90EntransydissipationEntransydissipationnumberEDTR91
EntropygenerationnumberRevisedentropygenerationnumberEntropygeneration92Example2:two-streamHXsCase1:heatcapacityflowratesandtheinlettemperaturesareprescribedCh=5W/K,Cc=8W/K,Tin-h=360K,andTin-c=300KWithincreasing
R,NRS,NG
Sg,NS,dis:notmonotonic93Example2:two-streamHXsCase2:
theprescribedparametersaretheinlettemperatures,theratioQ/ChandtheratioQ/CcinsteadoftheheatcapacityflowratesWithincreasing
R
Sg,dis
NRS,NG,NS~
constant94Example2:two-streamHXsCase3:
theheattransferrateisprescribed.AllsixconceptsaresuitableforoptimizingTHsdesignswithaprescribedheattransferrate(theentropygeneration,entropygenerationnumber,revisedentropygenerationnumber,entransydissipation,entransydissipationnumberandEDBthermalresistance).95Example3:One-dimensionalheattransferTheoptimizationobjectiveoftheheattransferprocessisthemaximumheattransferrate96Example3:one-dimensionalheattransferSmallerresistanceRlargerQ,Sg,
dis;
NRS,NG
:constant97CasesCasedescriptionCaseIHXswithprescribedstreaminlettemperaturesandheatcapacityflowCaseIIHXswithprescribedstreaminlettemperaturesandprescribedratiosoftheheattransferratetotheheatcapacityflowratesCaseIIIHXswithprescribedheattransferrateCaseIVOnedimensionalheattransferCaseVVolume-to-PointproblemConceptCaseICaseIICaseIIICaseIVCaseVOpt.objectiveSgnon-monotonicmonotonicmonotonicnon-monotonicmonotonicmin
(1/T)NSnon-monotonicconstantmonotonic------------NRSmonotonicconstantmonotonicconstantmonotonicmin
(1/T)
disnon-monotonicmonotonicmonotonicnon-monotonicmonotonicmin
(T)ormax(Q)NGmonotonicconstantmonotonicconstant--------Rmonotonicmonotonicmonotonicmonotonicmonotonicmin
(T)ormax(Q)98GlobalOptimizationofGasRefrigerationSystemsPart5
ApplicationtoathermodynamicsystemAglobaloptimizationofgasrefrigerationsystems99GasrefrigerationsystemThefluidflowsintotheHXlandheatsthegas:T4
→
T1.Theheatedgasentersthecompressor:p1→p2,T1→
T2.ThegasiscooledintheHXh:T2
→T3.Thecooledgasenterstheexpander:p2
→p1,T3
→T4.C:compressorE:expanderHXh:hot-endheatexchangerHXl:cold-endheatexchanger100OptimizationofagasrefrigerationcycleDesignRequirementsTemperaturesatthehotandcoldends:Th,TlPerformanceofcompressorandexpander.Coolingcapacityofthecycle:QlMassflowrateoftheworkingmedia:ma,mh,mlDesignParametersThermalconductanceofheatHXs:(KA)h,(KA)l101OptimizationobjectivesMinimizethecost,e.g.theheattransferarea,ofexchanger,
whenthenetpowerconsumptionisgiven:Minimizethe
netpowerconsumption,whenthecostofexchangerisgiven:102thelackofamathematicalrelationbetweengivenquantitiesanddesignparameters;individualparameteranalysiswiththeotherparametersfixedinoptimization,i.e.,“try-anderror”method.Systemoptimization?Establishthemathematicalrelationbetweenthedesignrequirementsanddesignparameters.Thekeypointoftheoptimizationproblem:103TheoreticalanalysisCompressionincompressorExpansioninexpanderHeattransferinHXlHeattransferinHXh104T-qdiagramforheatexchangers
Theshadowarea
istheentransydissipationrateinaHX.105TheentransydissipationrateinHXsisalsothefunctionofthethermalconductanceofHX,(KA),andtheheatcapacityratesofhotandcoldfluids,Ch=mhcp,h
andCc
=mccp,cCombiningtwoequations:ApplythisrelationtothehotandcoldendHXs106ApplytotheHXatthehotendChThenCaisheatcapacityflowrateofgas107ApplytotheHXatthecoldend108ThermodynamicanalysisnC
:polytrophicindexCompresionprocessExpansionprocessTherelationsbetweentemperaturesareestablished109HeattransferanalysisThermodynamicanalysis110Combiningbothheattransferandthermodynamicrelations,wetheoreticallyestablishthemathematicalrelationbetweenallthedesignparametersandtherequirements.Thisrelationmakesthetheoreticalglobaloptimizationfortherefrigerationsystemspossible!111OptimizationmodelBasedontherelationabove,theoptimizationproblemisconvertedintoaconditionalextremumproblem:whereT1
andT2arefunctionsaboutdesignparameters112ConstructaLagrange
function:OptimizationEquations:Tofindoptimalparameters113OptimizationresultsGivenquantities:Th=303K,Tl=273K,Ch
=400W/K,Cl=250W/K,Ql=1000W,Wnet=500W,FC=50WParametersCaW/K(KA)hW/K(KA)lW/K∑(KA)W/KResults913.528.028.656.6Optimizationresults:114TheΣ(KA)reachesitsminimumwhendesignparametersequaltotheoptimizedvalues.(KA)h115Theoptimalthermalconductanceversusthenetpowerconsumptions116Thebasicideaintheaboveapplication?Applyentransydissipationrelationtosetuprelationbetweenparameters,andconstraint,sothatwecanmakeatheoreticalderivationtofindtheoptimalparameters.117Part6
Anattempt:entransyanalysisofthermodynamiccycle--entransyloss
118Work
WEnergybalance119Heat
QEntransybalance120
TheprocessentransyHeatentransy:entransychangedueheatexchangeWorkentransy:entransychangeduetoinput/outputworkBothcanaffectinternalenergyandthusentransyEntransystateHeatentransyprocessWorkentransyprocessTermnatureTheCarnotcycleACarnotengineworksbetweenheatreservoirswithtemperaturesTH,TL.ItreceiveheatQH–CfromTH,releaseheatQL–CtoTL,andoutputW.121EntransyflowfromTH:
EntransyflowintoTL:PartoftheentransyflowfromTHisdeliveredintoTL,andtherestisusedinoutputtingwork:122GWC,theworkentransy,isthelargestconversionalentransybecauseWCislargest(Carnotcyle).TheCarnotcycleTheCarnotcycleforidealgasFourprocesses1-2:isothermalexpansion,receivingheat2-3:adiabaticexpansion3-4:isothermalcompression,releasingheat4-1:adiabaticcompression123TheCarnotcycleforidealgas1-2:isothermalexpansion,receivingheat124Integratefrom1to2TheCarnotcycleforidealgas2-3:adiabaticexpansion125Integratefrom2to3TheCarnotcycleforidealgas3-4:isothermalcompression
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 三年級(jí)上冊(cè)數(shù)學(xué)教案-第1單元 兩、三位數(shù)乘一位數(shù)第12課時(shí) 練習(xí)三(1)|蘇教版
- 2025年企業(yè)員工體檢協(xié)議先例文本
- 2025安全員B證考試題庫附答案
- 第一單元(整體教學(xué)設(shè)計(jì))-2024-2025學(xué)年九年級(jí)語文下冊(cè)大單元教學(xué)名師備課系列(統(tǒng)編版)
- 二零二五年度物聯(lián)網(wǎng)渠道框架合作協(xié)議
- 2025年度房屋租賃合同房東責(zé)任保險(xiǎn)附加版
- 2025年度返點(diǎn)合作協(xié)議版:新零售場(chǎng)景下的返利機(jī)制約定
- 2025年度全款購車汽車用品贈(zèng)送合同范本
- 2025年貴州城市職業(yè)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試題庫附答案
- 2025年度煙酒店區(qū)域市場(chǎng)拓展與渠道建設(shè)合作協(xié)議合同
- 高教版2023年中職教科書《語文》(基礎(chǔ)模塊)上冊(cè)教案全冊(cè)
- 存款代持協(xié)議書范文模板
- 2023年部編人教版三年級(jí)《道德與法治》下冊(cè)全冊(cè)課件【全套】
- 光伏項(xiàng)目施工總進(jìn)度計(jì)劃表(含三級(jí))
- DB32-T 4757-2024 連棟塑料薄膜溫室建造技術(shù)規(guī)范
- 2024年云上貴州大數(shù)據(jù)(集團(tuán))有限公司招聘筆試沖刺題(帶答案解析)
- 部編版小學(xué)語文四年級(jí)下冊(cè)教師教學(xué)用書(教學(xué)參考)完整版
- 風(fēng)光高壓變頻器用戶手冊(cè)最新2011-11-17
- 河南省中等職業(yè)教育技能大賽組委會(huì)辦公室
- 物流倉庫領(lǐng)料、發(fā)料操作流程圖
- 中職《機(jī)械基礎(chǔ)》全套教學(xué)課件(完整版)
評(píng)論
0/150
提交評(píng)論