![2024屆江蘇省無錫江陰市華士片中考數(shù)學適應性模擬試題含解析_第1頁](http://file4.renrendoc.com/view11/M02/1D/18/wKhkGWV_HEGAKckCAAIbIE-ELxs089.jpg)
![2024屆江蘇省無錫江陰市華士片中考數(shù)學適應性模擬試題含解析_第2頁](http://file4.renrendoc.com/view11/M02/1D/18/wKhkGWV_HEGAKckCAAIbIE-ELxs0892.jpg)
![2024屆江蘇省無錫江陰市華士片中考數(shù)學適應性模擬試題含解析_第3頁](http://file4.renrendoc.com/view11/M02/1D/18/wKhkGWV_HEGAKckCAAIbIE-ELxs0893.jpg)
![2024屆江蘇省無錫江陰市華士片中考數(shù)學適應性模擬試題含解析_第4頁](http://file4.renrendoc.com/view11/M02/1D/18/wKhkGWV_HEGAKckCAAIbIE-ELxs0894.jpg)
![2024屆江蘇省無錫江陰市華士片中考數(shù)學適應性模擬試題含解析_第5頁](http://file4.renrendoc.com/view11/M02/1D/18/wKhkGWV_HEGAKckCAAIbIE-ELxs0895.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆江蘇省無錫江陰市華士片中考數(shù)學適應性模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.若a是一元二次方程x2﹣x﹣1=0的一個根,則求代數(shù)式a3﹣2a+1的值時需用到的數(shù)學方法是()A.待定系數(shù)法B.配方C.降次D.消元2.某春季田徑運動會上,參加男子跳高的15名運動員的成績?nèi)缦卤硭荆撼煽內(nèi)藬?shù)這些運動員跳高成績的中位數(shù)是()A. B. C. D.3.已知,下列說法中,不正確的是()A. B.與方向相同C. D.4.如圖所示是8個完全相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.5.如圖,圖1是由5個完全相同的正方體堆成的幾何體,現(xiàn)將標有E的正方體平移至如圖2所示的位置,下列說法中正確的是()A.左、右兩個幾何體的主視圖相同B.左、右兩個幾何體的左視圖相同C.左、右兩個幾何體的俯視圖不相同D.左、右兩個幾何體的三視圖不相同6.如圖,在正方形OABC中,點A的坐標是(﹣3,1),點B的縱坐標是4,則B,C兩點的坐標分別是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)7.已知二次函數(shù)的圖象如圖所示,若,是這個函數(shù)圖象上的三點,則的大小關(guān)系是()A. B. C. D.8.-4的絕對值是()A.4 B. C.-4 D.9.下列計算,結(jié)果等于a4的是()A.a(chǎn)+3aB.a(chǎn)5﹣aC.(a2)2D.a(chǎn)8÷a210.估計﹣1的值在()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間二、填空題(本大題共6個小題,每小題3分,共18分)11.與直線平行的直線可以是__________(寫出一個即可).12.使分式x213.如圖,已知直線y=x+4與雙曲線y=(x<0)相交于A、B兩點,與x軸、y軸分別相交于D、C兩點,若AB=2,則k=_____.14.如果兩個相似三角形對應邊上的高的比為1:4,那么這兩個三角形的周長比是___.15.從1,2,3,4,5,6,7,8這八個數(shù)中,任意抽取一個數(shù),這個數(shù)恰好是合數(shù)的概率是__________.16.因式分解:9a3b﹣ab=_____.三、解答題(共8題,共72分)17.(8分)如圖,△ABC中,∠C=90°,∠A=30°.用尺規(guī)作圖作AB邊上的中垂線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明);連接BD,求證:BD平分∠CBA.18.(8分)已知關(guān)于x的方程x2﹣6mx+9m2﹣9=1.(1)求證:此方程有兩個不相等的實數(shù)根;(2)若此方程的兩個根分別為x1,x2,其中x1>x2,若x1=2x2,求m的值.19.(8分)在圍棋盒中有x顆黑色棋子和y顆白色棋子,從盒中隨機地取出一個棋子,如果它是黑色棋子的概率是;如果往盒中再放進10顆黑色棋子,則取得黑色棋子的概率變?yōu)椋髕和y的值.20.(8分)如圖,已知點、在直線上,且,于點,且,以為直徑在的左側(cè)作半圓,于,且.若半圓上有一點,則的最大值為________;向右沿直線平移得到;①如圖,若截半圓的的長為,求的度數(shù);②當半圓與的邊相切時,求平移距離.21.(8分)九年級學生到距離學校6千米的百花公園去春游,一部分學生步行前往,20分鐘后另一部分學生騎自行車前往,設(分鐘)為步行前往的學生離開學校所走的時間,步行學生走的路程為千米,騎自行車學生騎行的路程為千米,關(guān)于的函數(shù)圖象如圖所示.(1)求關(guān)于的函數(shù)解析式;(2)步行的學生和騎自行車的學生誰先到達百花公園,先到了幾分鐘?22.(10分)在平面直角坐標系中,已知直線y=﹣x+4和點M(3,2)(1)判斷點M是否在直線y=﹣x+4上,并說明理由;(2)將直線y=﹣x+4沿y軸平移,當它經(jīng)過M關(guān)于坐標軸的對稱點時,求平移的距離;(3)另一條直線y=kx+b經(jīng)過點M且與直線y=﹣x+4交點的橫坐標為n,當y=kx+b隨x的增大而增大時,則n取值范圍是_____.23.(12分)解不等式:﹣≤124.某公司10名銷售員,去年完成的銷售額情況如表:銷售額(單位:萬元)34567810銷售員人數(shù)(單位:人)1321111(1)求銷售額的平均數(shù)、眾數(shù)、中位數(shù);(2)今年公司為了調(diào)動員工積極性,提高年銷售額,準備采取超額有獎的措施,請根據(jù)(1)的結(jié)果,通過比較,合理確定今年每個銷售員統(tǒng)一的銷售額標準是多少萬元?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】
根據(jù)一元二次方程的解的定義即可求出答案.【題目詳解】由題意可知:a2-a-1=0,
∴a2-a=1,
或a2-1=a
∴a3-2a+1
=a3-a-a+1
=a(a2-1)-(a-1)
=a2-a+1
=1+1
=2
故選:C.【題目點撥】本題考查了一元二次方程的解,解題的關(guān)鍵是正確理解一元二次方程的解的定義.2、C【解題分析】
根據(jù)中位數(shù)的定義解答即可.【題目詳解】解:在這15個數(shù)中,處于中間位置的第8個數(shù)是1.1,所以中位數(shù)是1.1.
所以這些運動員跳高成績的中位數(shù)是1.1.
故選:C.【題目點撥】本題考查了中位數(shù)的意義.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).3、A【解題分析】
根據(jù)平行向量以及模的定義的知識求解即可求得答案,注意掌握排除法在選擇題中的應用.【題目詳解】A、,故該選項說法錯誤B、因為,所以與的方向相同,故該選項說法正確,C、因為,所以,故該選項說法正確,D、因為,所以;故該選項說法正確,故選:A.【題目點撥】本題考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共線向量,是指方向相同或相反的非零向量.零向量和任何向量平行.4、A【解題分析】分析:根據(jù)主視圖、左視圖、俯視圖是分別從物體正面、側(cè)面和上面看所得到的圖形,從而得出該幾何體的左視圖.詳解:該幾何體的左視圖是:故選A.點睛:本題考查了學生的思考能力和對幾何體三種視圖的空間想象能力.5、B【解題分析】
直接利用已知幾何體分別得出三視圖進而分析得出答案.【題目詳解】A、左、右兩個幾何體的主視圖為:,故此選項錯誤;B、左、右兩個幾何體的左視圖為:,故此選項正確;C、左、右兩個幾何體的俯視圖為:,故此選項錯誤;D、由以上可得,此選項錯誤;故選B.【題目點撥】此題主要考查了簡單幾何體的三視圖,正確把握觀察的角度是解題關(guān)鍵.6、A【解題分析】
作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,由AAS證明△AOE≌△OCD,得出AE=OD,OE=CD,由點A的坐標是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【題目詳解】解:如圖所示:作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,則∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四邊形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵點A的坐標是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故選A.【題目點撥】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、坐標與圖形性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.7、A【解題分析】
先求出二次函數(shù)的對稱軸,結(jié)合二次函數(shù)的增減性即可判斷.【題目詳解】解:二次函數(shù)的對稱軸為直線,∵拋物線開口向下,∴當時,y隨x增大而增大,∵,∴故答案為:A.【題目點撥】本題考查了根據(jù)自變量的大小,比較函數(shù)值的大小,解題的關(guān)鍵是熟悉二次函數(shù)的增減性.8、A【解題分析】
根據(jù)絕對值的概念計算即可.(絕對值是指一個數(shù)在坐標軸上所對應點到原點的距離叫做這個數(shù)的絕對值.)【題目詳解】根據(jù)絕對值的概念可得-4的絕對值為4.【題目點撥】錯因分析:容易題.選錯的原因是對實數(shù)的相關(guān)概念沒有掌握,與倒數(shù)、相反數(shù)的概念混淆.9、C【解題分析】
根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘進行計算即可.【題目詳解】A.a(chǎn)+3a=4a,錯誤;B.a(chǎn)5和a不是同類項,不能合并,故此選項錯誤;C.(a2)2=a4,正確;D.a(chǎn)8÷a2=a6,錯誤.故選C.【題目點撥】本題主要考查了同底數(shù)冪的乘除法,以及冪的乘方,關(guān)鍵是正確掌握計算法則.10、B【解題分析】
根據(jù),可得答案.【題目詳解】解:∵,∴,∴∴﹣1的值在2和3之間.故選B.【題目點撥】本題考查了估算無理數(shù)的大小,先確定的大小,在確定答案的范圍.二、填空題(本大題共6個小題,每小題3分,共18分)11、y=-2x+5(答案不唯一)【解題分析】
根據(jù)兩條直線平行的條件:k相等,b不相等解答即可.【題目詳解】解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).故答案為y=2x+1.(提示:滿足的形式,且)【題目點撥】本題考查了兩條直線相交或平行問題.直線y=kx+b,(k≠0,且k,b為常數(shù)),當k相同,且b不相等,圖象平行;當k不同,且b相等,圖象相交;當k,b都相同時,兩條直線重合.12、1【解題分析】試題分析:根據(jù)題意可知這是分式方程,x2答案為1.考點:分式方程的解法13、-3【解題分析】設A(a,a+4),B(c,c+4),則解得:x+4=,即x2+4x?k=0,∵直線y=x+4與雙曲線y=相交于A、B兩點,∴a+c=?4,ac=-k,∴(c?a)2=(c+a)2?4ac=16+4k,∵AB=,∴由勾股定理得:(c?a)2+[c+4?(a+4)]2=()2,2(c?a)2=8,(c?a)2=4,∴16+4k=4,解得:k=?3,故答案為?3.點睛:本題考查了一次函數(shù)與反比例函數(shù)的交點問題、根與系數(shù)的關(guān)系、勾股定理、圖象上點的坐標特征等,題目具有一定的代表性,綜合性強,有一定難度.14、1:4【解題分析】∵兩個相似三角形對應邊上的高的比為1∶4,∴這兩個相似三角形的相似比是1:4∵相似三角形的周長比等于相似比,∴它們的周長比1:4,故答案為:1:4.【題目點撥】本題考查了相似三角形的性質(zhì),相似三角形對應邊上的高、相似三角形的周長比都等于相似比.15、.【解題分析】
根據(jù)合數(shù)定義,用合數(shù)的個數(shù)除以數(shù)的總數(shù)即為所求的概率.【題目詳解】∵在1,2,3,4,5,6,7,8這八個數(shù)中,合數(shù)有4、6、8這3個,∴這個數(shù)恰好是合數(shù)的概率是.故答案為:.【題目點撥】本題考查了概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A);找到合數(shù)的個數(shù)是解題的關(guān)鍵.16、ab(3a+1)(3a-1).【解題分析】試題分析:原式提取公因式后,利用平方差公式分解即可.試題解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).考點:提公因式法與公式法的綜合運用.三、解答題(共8題,共72分)17、(1)作圖見解析;(2)證明見解析.【解題分析】
(1)分別以A、B為圓心,以大于AB的長度為半徑畫弧,過兩弧的交點作直線,交AC于點D,AB于點E,直線DE就是所要作的AB邊上的中垂線;
(2)根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得AD=BD,再根據(jù)等邊對等角的性質(zhì)求出∠ABD=∠A=30°,然后求出∠CBD=30°,從而得到BD平分∠CBA.【題目詳解】(1)解:如圖所示,DE就是要求作的AB邊上的中垂線;(2)證明:∵DE是AB邊上的中垂線,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.【題目點撥】考查線段的垂直平分線的作法以及角平分線的判定,熟練掌握線段的垂直平分弦的作法是解題的關(guān)鍵.18、(1)見解析;(2)m=2【解題分析】
(1)根據(jù)一元二次方程根的判別式進行分析解答即可;(2)用“因式分解法”解原方程,求得其兩根,再結(jié)合已知條件分析解答即可.【題目詳解】(1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.∴方程有兩個不相等的實數(shù)根;(2)關(guān)于x的方程:x2﹣6mx+9m2﹣9=1可化為:[x﹣(2m+2)][x﹣(2m﹣2)]=1,解得:x=2m+2和x=2m-2,∵2m+2>2m﹣2,x1>x2,∴x1=2m+2,x2=2m﹣2,又∵x1=2x2,∴2m+2=2(2m﹣2)解得:m=2.【題目點撥】(1)熟知“一元二次方程根的判別式:在一元二次方程中,當時,原方程有兩個不相等的實數(shù)根,當時,原方程有兩個相等的實數(shù)根,當時,原方程沒有實數(shù)根”是解答第1小題的關(guān)鍵;(2)能用“因式分解法”求得關(guān)于x的方程x2﹣6mx+9m2﹣9=1的兩個根是解答第2小題的關(guān)鍵.19、x=15,y=1【解題分析】
根據(jù)概率的求法:在圍棋盒中有x顆黑色棋子和y顆白色棋子,共x+y顆棋子,如果它是黑色棋子的概率是,有成立.化簡可得y與x的函數(shù)關(guān)系式;
(2)若往盒中再放進10顆黑色棋子,在盒中有10+x+y顆棋子,則取得黑色棋子的概率變?yōu)?,結(jié)合(1)的條件,可得,解可得x=15,y=1.【題目詳解】依題意得,,化簡得,,解得,.,檢驗當x=15,y=1時,,,∴x=15,y=1是原方程的解,經(jīng)檢驗,符合題意.答:x=15,y=1.【題目點撥】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.20、(1);(2)①;②【解題分析】
(1)由圖可知當點F與點D重合時,AF最大,根據(jù)勾股定理即可求出此時AF的長;(2)①連接EG、EH.根據(jù)的長為π可求得∠GEH=60°,可得△GEH是等邊三角形,根據(jù)等邊三角形的三個角都等于60°得出∠HGE=60°,可得EG//A'O,求得∠GEO=90°,得出△GEO是等腰直角三角形,求得∠EGO=45°,根據(jù)平角的定義即可求出∠A'GO的度數(shù);②分C'A'與半圓相切和B'A'與半圓相切兩種情況進行討論,利用切線的性質(zhì)、勾股定理、切斜長定理等知識進行解答即可得出答案.【題目詳解】解:(1)當點F與點D重合時,AF最大,AF最大=AD==,故答案為:;(2)①連接、.∵,∴.∵,∴是等邊三角形,∴.∵,∴,∴,∵,∴,∵,∴,∴.②當切半圓于時,連接,則.∵,∴切半圓于點,∴.∵,∴,∴平移距離為.當切半圓于時,連接并延長于點,∵,,,∴,∵,∴,∵,∴,∵,∴.∵,∴.【題目點撥】本題主要考查了弧長公式、勾股定理、切線的性質(zhì),作出過切點的半徑構(gòu)造出直角三角形是解決此題的關(guān)鍵.21、;(2)騎自行車的學生先到達百花公園,先到了10分鐘.【解題分析】
(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得關(guān)于的函數(shù)解析式;(2)根據(jù)函數(shù)圖象中的數(shù)據(jù)和題意可以分別求得步行學生和騎自行車學生到達百花公園的時間,從而可以解答本題.【題目詳解】解:(1)設關(guān)于的函數(shù)解析式是,,得,即關(guān)于的函數(shù)解析式是;(2)由圖象可知,步行的學生的速度為:千米/分鐘,步行同學到達百花公園的時間為:(分鐘),當時,,得,,答:騎自行車的學生先到達百花公園,先到了10分鐘.【題目點撥】本題考查一次函數(shù)的應用,解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.22、(1)點M(1,2)不在直線y=﹣x+4上,理由見解析;(2)平移的距離為1或2;(1)2<n<1.【解題分析】
(1)將x=1代入y=-x+4,求出y=-1+4=1≠2,即可判斷點M(1,2)不在直線y=-x+4上;(2)設直線y=-x+4沿y軸平移后的解析式為y=-x+4+b.分兩種情況進行討論:①點M(1,2)關(guān)于x軸的對稱點為點M1(1,-2);②點M(1,2)關(guān)于y軸的對稱點為點M2(-1,2).分別求出b的值,得到平移的距離;(1)由直線y=kx+b經(jīng)過點M(1,2),得到b=2-1k.由直線y=kx+b與直線y=-x+4交點的橫坐標為n,得出y=kn+b=-n+4,k=.根據(jù)y=kx+b隨x的增大而增大,得到k>0,即>0,那么①,或②,分別解不等式組即可求出n的取值范圍.【題目詳解】(1)點M不在直線y=﹣x+4上,理由如下:∵當x=1時,y=﹣1+4=1≠2,∴點M(1,2)不在直線y=﹣x+4上;(2)設直線y=﹣x+4沿y軸平移后的解析式為y=﹣x+4+b.①點M(1,2)關(guān)于x軸的對稱點為點M1(1,﹣2),∵點M1(1,﹣2)在直線y=﹣x+4+b上,∴﹣2=﹣1+4+b,∴b=﹣1,即平移的距離為1;②點M(1,2)關(guān)于y軸的對稱點為點M2(﹣1,2),∵點M2(﹣1,2)在直線y=﹣x+4+b上,∴2=1+4+b,∴b=﹣2,即平移的距離為2.綜上所述,平移的距離為1或2;(1)∵直線y=kx+b經(jīng)過點M(1,2),∴2=1k+b,b=2﹣1k.∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學三年級,五年級下冊數(shù)學口算題比賽試卷
- 小學二年級數(shù)學數(shù)學口算試卷人教版
- 疫情期間簽訂租房合同范本(2篇)
- 疾病預防服務合同(2篇)
- 電商控價合同(2篇)
- 電力項目投資合同(2篇)
- 2024-2025學年高中物理第三章3放射性的應用危害與防護練習含解析教科版選修3-5
- 山東師范大學教師職務聘任制試點工作實施方案-山東師范大
- 新人員工年終工作總結(jié)
- 2024-2025學年新教材高中政治 第二單元 人民當家作主 4.2 堅持人民民主專政說課稿 部編版必修3
- CB-T4528-2024《船舶行業(yè)企業(yè)應急管理要求》
- 22G101三維彩色立體圖集
- (正式版)HG∕T 20644-2024 彈簧支吊架選用標準
- 中心醫(yī)院消防施工組織設計
- 港口自動化與智慧港口發(fā)展方向
- 黑龍江省哈爾濱市雙城區(qū)2024年八年級下冊物理期末經(jīng)典試題含解析
- 項目采購管理培訓
- 精益生產(chǎn)工作匯報(模板)
- 面試官面試技巧(精簡版)課件
- 中央空調(diào)節(jié)能改造方案
- 高校圖書館服務
評論
0/150
提交評論