![山東省濱州市北城英才校2024屆中考數學考前最后一卷含解析_第1頁](http://file4.renrendoc.com/view11/M03/20/3B/wKhkGWV_H1GAQyPHAAITdBDDcds604.jpg)
![山東省濱州市北城英才校2024屆中考數學考前最后一卷含解析_第2頁](http://file4.renrendoc.com/view11/M03/20/3B/wKhkGWV_H1GAQyPHAAITdBDDcds6042.jpg)
![山東省濱州市北城英才校2024屆中考數學考前最后一卷含解析_第3頁](http://file4.renrendoc.com/view11/M03/20/3B/wKhkGWV_H1GAQyPHAAITdBDDcds6043.jpg)
![山東省濱州市北城英才校2024屆中考數學考前最后一卷含解析_第4頁](http://file4.renrendoc.com/view11/M03/20/3B/wKhkGWV_H1GAQyPHAAITdBDDcds6044.jpg)
![山東省濱州市北城英才校2024屆中考數學考前最后一卷含解析_第5頁](http://file4.renrendoc.com/view11/M03/20/3B/wKhkGWV_H1GAQyPHAAITdBDDcds6045.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省濱州市北城英才校2024年中考數學考前最后一卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列計算,正確的是()A.a2?a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+12.據國土資源部數據顯示,我國是全球“可燃冰”資源儲量最多的國家之一,海、陸總儲量約為39000000000噸油當量,將39000000000用科學記數法表示為()A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×1093.計算(﹣5)﹣(﹣3)的結果等于()A.﹣8B.8C.﹣2D.24.一個盒子內裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是()A. B. C. D.5.如圖,分別以等邊三角形ABC的三個頂點為圓心,以邊長為半徑畫弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.26.下列幾何體中,主視圖和俯視圖都為矩形的是(
)A. B. C. D.7.如圖所示,在長方形紙片ABCD中,AB=32cm,把長方形紙片沿AC折疊,點B落在點E處,AE交DC于點F,AF=25cm,則AD的長為()A.16cm B.20cm C.24cm D.28cm8.解分式方程﹣3=時,去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=49.如圖,經過測量,C地在A地北偏東46°方向上,同時C地在B地北偏西63°方向上,則∠C的度數為()A.99° B.109° C.119° D.129°10.黃河是中華民族的象征,被譽為母親河,黃河壺口瀑布位于我省吉縣城西45千米處,是黃河上最具氣勢的自然景觀.其落差約30米,年平均流量1010立方米/秒.若以小時作時間單位,則其年平均流量可用科學記數法表示為()A.6.06×104立方米/時 B.3.136×106立方米/時C.3.636×106立方米/時 D.36.36×105立方米/時11.如圖,在中,,,,點分別在上,于,則的面積為()A. B. C. D.12.如圖,在中,面積是16,的垂直平分線分別交邊于點,若點為邊的中點,點為線段上一動點,則周長的最小值為()A.6 B.8 C.10 D.12二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在x軸的正半軸上依次間隔相等的距離取點A1,A2,A3,A4,…,An,分別過這些點做x軸的垂線與反比例函數y=的圖象相交于點P1,P2,P3,P4,…Pn,再分別過P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分別為B1,B2,B3,B4,…,Bn﹣1,連接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一組Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,則Rt△Pn﹣1Bn﹣1Pn的面積為_____.14.圖1、圖2的位置如圖所示,如果將兩圖進行拼接(無覆蓋),可以得到一個矩形,請利用學過的變換(翻折、旋轉、軸對稱)知識,將圖2進行移動,寫出一種拼接成矩形的過程______.15.如圖,點是反比例函數圖像上的兩點(點在點左側),過點作軸于點,交于點,延長交軸于點,已知,,則的值為__________.16.如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E、F分別在BC和CD上,下列結論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正確的序號是(把你認為正確的都填上).17.已知二次函數的圖象如圖所示,若方程有兩個不相等的實數根,則的取值范圍是_____________.18.如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=(x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則=______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載,某中學數學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂直,測得CD的長等于24米,在l上點D的同側取點A、B,使∠CAD=30°,∠CBD=60°.求AB的長(結果保留根號);已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時1.5秒,這輛校車是否超速?說明理由.(參考數據:≈1.7,≈1.4)20.(6分)如圖,在平行四邊形中,的平分線與邊相交于點.(1)求證;(2)若點與點重合,請直接寫出四邊形是哪種特殊的平行四邊形.21.(6分)已知:如圖,AB=AC,點D是BC的中點,AB平分∠DAE,AE⊥BE,垂足為E.求證:AD=AE.22.(8分)如圖,已知在梯形ABCD中,,P是線段BC上一點,以P為圓心,PA為半徑的與射線AD的另一個交點為Q,射線PQ與射線CD相交于點E,設.(1)求證:;(2)如果點Q在線段AD上(與點A、D不重合),設的面積為y,求y關于x的函數關系式,并寫出定義域;(3)如果與相似,求BP的長.23.(8分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.24.(10分)已知拋物線y=x2﹣(2m+1)x+m2+m,其中m是常數.(1)求證:不論m為何值,該拋物線與z軸一定有兩個公共點;(2)若該拋物線的對稱軸為直線x=,請求出該拋物線的頂點坐標.25.(10分)如圖,關于x的二次函數y=x2+bx+c的圖象與x軸交于點A(1,0)和點B與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.(1)求二次函數的表達式;(2)在y軸上是否存在一點P,使△PBC為等腰三角形?若存在.請求出點P的坐標;(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.26.(12分)(2016湖南省株洲市)某市對初二綜合素質測評中的審美與藝術進行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當綜合評價得分大于或等于80分時,該生綜合評價為A等.(1)孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學測試成績和平時成績各得多少分?(2)某同學測試成績?yōu)?0分,他的綜合評價得分有可能達到A等嗎?為什么?(3)如果一個同學綜合評價要達到A等,他的測試成績至少要多少分?27.(12分)如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AF交CD于點E,交BC的延長線于點F.(1)求證:BF=CD;(2)連接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四邊形ABCD的周長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】
解:A.故錯誤;B.故錯誤;C.正確;D.故選C.【題目點撥】本題考查合并同類項,同底數冪相乘;冪的乘方,以及完全平方公式的計算,掌握運算法則正確計算是解題關鍵.2、A【解題分析】
用科學記數法表示較大的數時,一般形式為a×10n,其中1≤|a|<10,n為整數,據此判斷即可.【題目詳解】39000000000=3.9×1.故選A.【題目點撥】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.3、C【解題分析】分析:減去一個數,等于加上這個數的相反數.依此計算即可求解.詳解:(-5)-(-3)=-1.故選:C.點睛:考查了有理數的減法,方法指引:①在進行減法運算時,首先弄清減數的符號;②將有理數轉化為加法時,要同時改變兩個符號:一是運算符號(減號變加號);二是減數的性質符號(減數變相反數).4、C【解題分析】
畫樹狀圖求出共有12種等可能結果,符合題意得有2種,從而求解.【題目詳解】解:畫樹狀圖得:∵共有12種等可能的結果,兩次都摸到白球的有2種情況,∴兩次都摸到白球的概率是:.故答案為C.【題目點撥】本題考查畫樹狀圖求概率,掌握樹狀圖的畫法準確求出所有的等可能結果及符合題意的結果是本題的解題關鍵.5、D【解題分析】【分析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個等邊三角形的面積,分別求出即可.【題目詳解】過A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【題目點撥】本題考查了等邊三角形的性質和扇形的面積計算,能根據圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個等邊三角形的面積是解此題的關鍵.6、B【解題分析】A、主視圖為等腰三角形,俯視圖為圓以及圓心,故A選項錯誤;B、主視圖為矩形,俯視圖為矩形,故B選項正確;C、主視圖,俯視圖均為圓,故C選項錯誤;D、主視圖為矩形,俯視圖為三角形,故D選項錯誤.故選:B.7、C【解題分析】
首先根據平行線的性質以及折疊的性質證明∠EAC=∠DCA,根據等角對等邊證明FC=AF,則DF即可求得,然后在直角△ADF中利用勾股定理求解.【題目詳解】∵長方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵長方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,AD==24(cm).故選C.【題目點撥】本題考查了折疊的性質以及勾股定理,在折疊的過程中注意到相等的角以及相等的線段是關鍵.8、B【解題分析】
方程兩邊同時乘以(x-2),轉化為整式方程,由此即可作出判斷.【題目詳解】方程兩邊同時乘以(x-2),得1﹣3(x﹣2)=﹣4,故選B.【題目點撥】本題考查了解分式方程,利用了轉化的思想,熟練掌握解分式方程的一般步驟以及注意事項是解題的關鍵.9、B【解題分析】
方向角是從正北或正南方向到目標方向所形成的小于90°的角,根據平行線的性質求得∠ACF與∠BCF的度數,∠ACF與∠BCF的和即為∠C的度數.【題目詳解】解:由題意作圖如下∠DAC=46°,∠CBE=63°,由平行線的性質可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故選B.【題目點撥】本題考查了方位角和平行線的性質,熟練掌握方位角的概念和平行線的性質是解題的關鍵.10、C【解題分析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】1010×360×24=3.636×106立方米/時,故選C.【題目點撥】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.11、C【解題分析】
先利用三角函數求出BE=4m,同(1)的方法判斷出∠1=∠3,進而得出△ACQ∽△CEP,得出比例式求出PE,最后用面積的差即可得出結論;【題目詳解】∵,
∴CQ=4m,BP=5m,
在Rt△ABC中,sinB=,tanB=,
如圖2,過點P作PE⊥BC于E,
在Rt△BPE中,PE=BP?sinB=5m×=3m,tanB=,
∴,
∴BE=4m,CE=BC-BE=8-4m,
同(1)的方法得,∠1=∠3,
∵∠ACQ=∠CEP,
∴△ACQ∽△CEP,
∴,∴,
∴m=,
∴PE=3m=,
∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故選C.【題目點撥】本題是相似形綜合題,主要考查了相似三角形的判定和性質,三角形的面積的計算方法,判斷出△ACQ∽△CEP是解題的關鍵.12、C【解題分析】
連接AD,AM,由于△ABC是等腰三角形,點D是BC的中點,故,在根據三角形的面積公式求出AD的長,再根據EF是線段AC的垂直平分線可知,點A關于直線EF的對稱點為點C,,推出,故AD的長為BM+MD的最小值,由此即可得出結論.【題目詳解】連接AD,MA∵△ABC是等腰三角形,點D是BC邊上的中點∴∴解得∵EF是線段AC的垂直平分線∴點A關于直線EF的對稱點為點C∴∵∴AD的長為BM+MD的最小值∴△CDM的周長最短故選:C.【題目點撥】本題考查了三角形線段長度的問題,掌握等腰三角形的性質、三角形的面積公式、垂直平分線的性質是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】
解:設OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,∵當x=a時,,∴P1的坐標為(a,),當x=2a時,,∴P2的坐標為(2a,),……∴Rt△P1B1P2的面積為,Rt△P2B2P3的面積為,Rt△P3B3P4的面積為,……∴Rt△Pn-1Bn-1Pn的面積為.故答案為:14、先將圖2以點A為旋轉中心逆時針旋轉,再將旋轉后的圖形向左平移5個單位.【解題分析】
變換圖形2,可先旋轉,然后平移與圖2拼成一個矩形.【題目詳解】先將圖2以點A為旋轉中心逆時針旋轉90°,再將旋轉后的圖形向左平移5個單位可以與圖1拼成一個矩形.故答案為:先將圖2以點A為旋轉中心逆時針旋轉90°,再將旋轉后的圖形向左平移5個單位.【題目點撥】本題考查了平移和旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.15、【解題分析】
過點B作BF⊥OC于點F,易證S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,因為,所以,,又因為AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因為S△OAD=S△OBF,所以×OD×AD=×OF×BF,即BF:AD=2:5=OD:OF,易證:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21,所以S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,即可得解:k=2S△OBF=.【題目詳解】解:過點B作BF⊥OC于點F,由反比例函數的比例系數|k|的意義可知:S△OAD=S△OBF,∴S△OAD-S△OED=S△OBF一S△OED,即S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,∵,∴,,∵AD∥BF∴S△BCF∽S△ACD,又∵,∴BF:AD=2:5,∵S△OAD=S△OBF,∴×OD×AD=×OF×BF∴BF:AD=2:5=OD:OF易證:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21∵S四邊形EDFB=,∴S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,∴k=2S△OBF=.故答案為.【題目點撥】本題考查反比例函數的比例系數|k|的幾何意義,解題關鍵是熟練運用相似三角形的判定定理和性質定理.16、①②④【解題分析】分析:∵四邊形ABCD是正方形,∴AB=AD?!摺鰽EF是等邊三角形,∴AE=AF。∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。∵BC=DC,∴BC﹣BE=CD﹣DF?!郈E=CF?!啖僬f法正確?!逤E=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。∵∠AEF=60°,∴∠AEB=75°?!啖谡f法正確。如圖,連接AC,交EF于G點,∴AC⊥EF,且AC平分EF。∵∠CAD≠∠DAF,∴DF≠FG。∴BE+DF≠EF。∴③說法錯誤。∵EF=2,∴CE=CF=。設正方形的邊長為a,在Rt△ADF中,,解得,∴?!唷!啖苷f法正確。綜上所述,正確的序號是①②④。17、【解題分析】分析:先移項,整理為一元二次方程,讓根的判別式大于0求值即可.詳解:由圖象可知:二次函數y=ax2+bx+c的頂點坐標為(1,1),∴=1,即b2-4ac=-20a,∵ax2+bx+c=k有兩個不相等的實數根,∴方程ax2+bx+c-k=0的判別式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0∵拋物線開口向下∴a<0∴1-k>0∴k<1.故答案為k<1.點睛:本題主要考查了拋物線與x軸的交點問題,以及數形結合法;二次函數中當b2-4ac>0時,二次函數y=ax2+bx+c的圖象與x軸有兩個交點.18、3﹣【解題分析】
首先設點B的橫坐標,由點B在拋物線y1=x2(x≥0)上,得出點B的坐標,再由平行,得出A和C的坐標,然后由CD平行于y軸,得出D的坐標,再由DE∥AC,得出E的坐標,即可得出DE和AB,進而得解.【題目詳解】設點B的橫坐標為,則∵平行于x軸的直線AC∴又∵CD平行于y軸∴又∵DE∥AC∴∴∴=3﹣【題目點撥】此題主要考查拋物線中的坐標求解,關鍵是利用平行的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)此校車在AB路段超速,理由見解析.【解題分析】
(1)結合三角函數的計算公式,列出等式,分別計算AD和BD的長度,計算結果,即可.(2)在第一問的基礎上,結合時間關系,計算速度,判斷,即可.【題目詳解】解:(1)由題意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽車從A到B用時1.5秒,所以速度為16÷1.5≈18.1(米/秒),因為18.1(米/秒)=65.2千米/時>45千米/時,所以此校車在AB路段超速.【題目點撥】考查三角函數計算公式,考查速度計算方法,關鍵利用正切值計算方法,計算結果,難度中等.20、(1)見解析;(2)菱形.【解題分析】
(1)根據角平分線的性質可得∠ADE=∠CDE,再由平行線的性質可得AB∥CD,易得AD=AE,從而可證得結論;(2)若點與點重合,可證得AD=AB,根據鄰邊相等的平行四邊形是菱形即可作出判斷.【題目詳解】(1)∵DE平分∠ADC,∴∠ADE=∠CDE.∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,AD=BC,AB=CD.∵∠AED=∠CDE.∴∠ADE=∠AED.∴AD=AE.∴BC=AE.∵AB=AE+EB.∴BE+BC=CD.(2)菱形,理由如下:由(1)可知,AD=AE,∵點E與B重合,∴AD=AB.∵四邊形ABCD是平行四邊形∴平行四邊形ABCD為菱形.【題目點撥】本題考查了平行四邊形的性質,平行線的性質,等腰三角形的性質,菱形的性質,熟練掌握各知識是解題的關鍵.21、見解析【解題分析】試題分析:證明簡單的線段相等,可證線段所在的三角形全等,結合本題,證△ADB≌△AEB即可.試題解析:∵AB=AC,點D是BC的中點,∴AD⊥BC,∴∠ADB=90°.∵AE⊥EB,∴∠E=∠ADB=90°.∵AB平分∠DAE,∴∠BAD=∠BAE.在△ADB和△AEB中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.22、(1)見解析;(2);(3)當或8時,與相似.【解題分析】
(1)想辦法證明即可解決問題;(2)作A于M,于N.則四邊形AMPN是矩形.想辦法求出AQ、PN的長即可解決問題;(3)因為,所以,又,推出,推出相似時,與相似,分兩種情形討論即可解決問題;【題目詳解】(1)證明:四邊形ABCD是等腰梯形,,,,,,,.(2)解:作于M,于N.則四邊形是矩形.在中,,,,,,.(3)解:,,,相似時,與相似,,當時,,此時,當時,,此時,綜上所述,當PB=5或8時,與△相似.【題目點撥】本題考查幾何綜合題、圓的有關性質、等腰梯形的性質,銳角三角函數、相似三角形的判定和性質、平行線的性質等知識,解題的關鍵是正確尋找相似三角形解決問題,學會添加常用輔助線,構造直角三角形和特殊四邊形解決問題,屬于中考壓軸題.23、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當點E運動到(1,1)時,四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解題分析】試題分析:(1)將點A、C的坐標分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據二次函數的解析式可得對稱軸方程,由勾股定理求出CD的值,以點C為圓心,CD為半徑作弧交對稱軸于P1;以點D為圓心CD為半徑作圓交對稱軸于點P1,P3;作CH垂直于對稱軸與點H,由等腰三角形的性質及勾股定理就可以求出結論;(3)由二次函數的解析式可求出B點的坐標,從而可求出BC的解析式,從而可設設E點的坐標,進而可表示出F的坐標,由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關系式,由二次函數的性質就可以求出結論.試題解析:(1)∵拋物線y=﹣x1+mx+n經過A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴拋物線的對稱軸是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD為腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x軸于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)當y=0時,0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).設直線BC的解析式為y=kx+b,由圖象,得,解得:,∴直線BC的解析式為:y=﹣x+1.如圖1,過點C作CM⊥EF于M,設E(a,﹣a+1),F(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BD?OC+EF?CM+EF?BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1時,S四邊形CDBF的面積最大=,∴E(1,1).考點:1、勾股定理;1、等腰三角形的性質;3、四邊形的面積;2、二次函數的最值24、(1)見解析;(2)頂點為(,﹣)【解題分析】
(1)根據題意,由根的判別式△=b2﹣4ac>0得到答案;(2)結合題意,根據對稱軸x=﹣得到m=2,即可得到拋物線解析式為y=x2﹣5x+6,再將拋物線解析式為y=x2﹣5x+6變形為y=x2﹣5x+6=(x﹣)2﹣,即可得到答案.【題目詳解】(1)證明:a=1,b=﹣(2m+1),c=m2+m,∴△=b2﹣4ac=[﹣(2m+1)]2﹣4×1×(m2+m)=1>0,∴拋物線與x軸有兩個不相同的交點.(2)解:∵y=x2﹣(2m+1)x+m2+m,∴對稱軸x=﹣==,∵對稱軸為直線x=,∴=,解得m=2,∴拋物線解析式為y=x2﹣5x+6,∵y=x2﹣5x+6=(x﹣)2﹣,∴頂點為(,﹣).【題目點撥】本題考查根的判別式、對稱軸和頂點,解題的關鍵是掌握根的判別式、對稱軸和頂點的計算和使用.25、(1)二次函數的表達式為:y=x2﹣4x+3;(2)點P的坐標為:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)當點M出發(fā)1秒到達D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【解題分析】
(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程組,解方程組即可得二次函數的表達式;(2)先求出點B的坐標,再根據勾股定理求得BC的長,當△PBC為等腰三角形時分三種情況進行討論:①CP=CB;②BP=BC;③PB=PC;分別根據這三種情況求出點P的坐標;(3)設AM=t則DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融租賃居間合同模板
- 始興縣中醫(yī)院特殊用房設施設備采購及安裝及醫(yī)療設備采購項目招標文件
- 終止合同退款協議
- 未維修事故車買賣合同協議書
- 企業(yè)人才培養(yǎng)與發(fā)展作業(yè)指導書
- 質押礦產權收益權擔保協議書
- 養(yǎng)雞業(yè)養(yǎng)殖技術手冊
- 庫房轉租合同
- 智能倉儲標準化管理與供應鏈優(yōu)化項目實踐
- 焊接結構分析與優(yōu)化作業(yè)指導書
- 信號與系統復習題(答案全)
- ISO∕IEC 23894-2023 信息技術 -人工智能 - 風險管理指南(雷澤佳譯-2024)
- 醫(yī)學人體美學的測量和評估
- 2024年湖南生物機電職業(yè)技術學院單招職業(yè)技能測試題庫及答案解析
- FZT 51006-2012 膜級聚己內酰胺切片
- 2024年公安部直屬事業(yè)單位招聘筆試參考題庫附帶答案詳解
- 蘇教版五年級上冊數學脫式計算100題及答案
- 2024年全國初中數學聯賽試題及答案(修正版)
- 采編系統操作手冊
- 豆制品店鋪策劃方案
- NB-T 47013.15-2021 承壓設備無損檢測 第15部分:相控陣超聲檢測
評論
0/150
提交評論