![內蒙古巴彥淖爾市杭錦后旗2024屆中考數(shù)學猜題卷含解析_第1頁](http://file4.renrendoc.com/view10/M03/0A/1A/wKhkGWV-_hOAAX6aAAFlfoTN2-U280.jpg)
![內蒙古巴彥淖爾市杭錦后旗2024屆中考數(shù)學猜題卷含解析_第2頁](http://file4.renrendoc.com/view10/M03/0A/1A/wKhkGWV-_hOAAX6aAAFlfoTN2-U2802.jpg)
![內蒙古巴彥淖爾市杭錦后旗2024屆中考數(shù)學猜題卷含解析_第3頁](http://file4.renrendoc.com/view10/M03/0A/1A/wKhkGWV-_hOAAX6aAAFlfoTN2-U2803.jpg)
![內蒙古巴彥淖爾市杭錦后旗2024屆中考數(shù)學猜題卷含解析_第4頁](http://file4.renrendoc.com/view10/M03/0A/1A/wKhkGWV-_hOAAX6aAAFlfoTN2-U2804.jpg)
![內蒙古巴彥淖爾市杭錦后旗2024屆中考數(shù)學猜題卷含解析_第5頁](http://file4.renrendoc.com/view10/M03/0A/1A/wKhkGWV-_hOAAX6aAAFlfoTN2-U2805.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古巴彥淖爾市杭錦后旗2024年中考數(shù)學猜題卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點ABC在⊙O上,OA∥BC,∠OAC=19°,則∠AOB的大小為()A.19° B.29° C.38° D.52°2.如圖,四邊形ABCD中,AB=CD,AD∥BC,以點B為圓心,BA為半徑的圓弧與BC交于點E,四邊形AECD是平行四邊形,AB=3,則的弧長為()A. B.π C. D.33.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,則AE的值是()A. B. C.6 D.44.下列計算正確的是()A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=5.如圖,矩形ABCD內接于⊙O,點P是上一點,連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.6.如圖是某幾何體的三視圖,則該幾何體的全面積等于()A.112 B.136 C.124 D.847.在一個直角三角形中,有一個銳角等于45°,則另一個銳角的度數(shù)是()A.75° B.60° C.45° D.30°8.已知A樣本的數(shù)據如下:72,73,76,76,77,78,78,78,B樣本的數(shù)據恰好是A樣本數(shù)據每個都加2,則A,B兩個樣本的下列統(tǒng)計量對應相同的是()A.平均數(shù) B.標準差 C.中位數(shù) D.眾數(shù)9.據調查,某班20為女同學所穿鞋子的尺碼如表所示,尺碼(碼)3435363738人數(shù)251021則鞋子尺碼的眾數(shù)和中位數(shù)分別是()A.35碼,35碼 B.35碼,36碼 C.36碼,35碼 D.36碼,36碼10.將拋物線向左平移2個單位長度,再向下平移3個單位長度,得到的拋物線的函數(shù)表達式為()A.B.C.D.11.下列是我國四座城市的地鐵標志圖,其中是中心對稱圖形的是()A. B. C. D.12.如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為()A. B.2 C. D.2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,數(shù)軸上點A所表示的實數(shù)是________________.14.計算的結果是______.15.對角線互相平分且相等的四邊形是()A.菱形 B.矩形 C.正方形 D.等腰梯形16.已知拋物線y=x2-x-1與x軸的一個交點為(m,0),則代數(shù)式m2-m+2017的值為____.17.如圖,在⊙O中,點B為半徑OA上一點,且OA=13,AB=1,若CD是一條過點B的動弦,則弦CD的最小值為_____.18.如圖,直線l1∥l2∥l3,直線AC分別交l1,l2,l3于點A,B,C;直線DF分別交l1,l2,l3于點D,E,F(xiàn).AC與DF相交于點H,且AH=2,HB=1,BC=5,則DEEF的值為三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在直角坐標系中△ABC的A、B、C三點坐標A(7,1)、B(8,2)、C(9,0).(1)請在圖中畫出△ABC的一個以點P(12,0)為位似中心,相似比為3的位似圖形△A′B′C′(要求與△ABC同在P點一側),畫出△A′B′C′關于y軸對稱的△A′'B′'C′';(2)寫出點A'的坐標.20.(6分)已知△ABC中,AD是∠BAC的平分線,且AD=AB,過點C作AD的垂線,交AD的延長線于點H.(1)如圖1,若∠BAC=60°.①直接寫出∠B和∠ACB的度數(shù);②若AB=2,求AC和AH的長;(2)如圖2,用等式表示線段AH與AB+AC之間的數(shù)量關系,并證明.21.(6分)在平面直角坐標系中,已知拋物線經過A(-3,0),B(0,-3),C(1,0)三點.(1)求拋物線的解析式;(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S關于m的函數(shù)關系式,并求出S的最大值;(3)若點P是拋物線上的動點,點Q是直線y=-x上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.22.(8分)關于的一元二次方程.求證:方程總有兩個實數(shù)根;若方程有一根小于1,求的取值范圍.23.(8分)已知關于x的分式方程=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m為常數(shù),方程①的根為非負數(shù).(1)求m的取值范圍;(2)若方程②有兩個整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.24.(10分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.求y與x之間的函數(shù)關系式;直接寫出當x>0時,不等式x+b>的解集;若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.25.(10分)計算:﹣|﹣2|+()﹣1﹣2cos45°26.(12分)如圖,在四邊形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四邊形ABCD的周長.27.(12分)已知△ABC在平面直角坐標系中的位置如圖所示.分別寫出圖中點A和點C的坐標;畫出△ABC繞點C按順時針方向旋轉90°后的△A′B′C′;求點A旋轉到點A′所經過的路線長(結果保留π).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】
由AO∥BC,得到∠ACB=∠OAC=19°,根據圓周角定理得到∠AOB=2∠ACB=38°.【題目詳解】∵AO∥BC,∴∠ACB=∠OAC,而∠OAC=19°,∴∠ACB=19°,∴∠AOB=2∠ACB=38°.故選:C.【題目點撥】本題考查了圓周角定理與平行線的性質.解題的關鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半定理的應用是解此題的關鍵.2、B【解題分析】∵四邊形AECD是平行四邊形,
∴AE=CD,
∵AB=BE=CD=3,
∴AB=BE=AE,
∴△ABE是等邊三角形,
∴∠B=60°,∴的弧長=.故選B.3、C【解題分析】
由角平分線的定義得到∠CBE=∠ABE,再根據線段的垂直平分線的性質得到EA=EB,則∠A=∠ABE,可得∠CBE=30°,根據含30度的直角三角形三邊的關系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【題目詳解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故選C.4、D【解題分析】
各項中每項計算得到結果,即可作出判斷.【題目詳解】解:A.原式=8,錯誤;B.原式=2+4,錯誤;C.原式=1,錯誤;D.原式=x6y﹣3=,正確.故選D.【題目點撥】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.5、A【解題分析】
連接BD,根據圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設DC為x,則BC為2x,根據勾股定理可得BD=x,再根據cos∠BDC===,即可得出結論.【題目詳解】連接BD,∵四邊形ABCD為矩形,∴BD過圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.【題目點撥】本題考查了圓周角定理與勾股定理,解題的關鍵是熟練的掌握圓周角定理與勾股定理的應用.6、B【解題分析】試題解析:該幾何體是三棱柱.如圖:由勾股定理全面積為:故該幾何體的全面積等于1.故選B.7、C【解題分析】
根據直角三角形兩銳角互余即可解決問題.【題目詳解】解:∵直角三角形兩銳角互余,∴另一個銳角的度數(shù)=90°﹣45°=45°,故選C.【題目點撥】本題考查直角三角形的性質,記住直角三角形兩銳角互余是解題的關鍵.8、B【解題分析】試題分析:根據樣本A,B中數(shù)據之間的關系,結合眾數(shù),平均數(shù),中位數(shù)和標準差的定義即可得到結論:設樣本A中的數(shù)據為xi,則樣本B中的數(shù)據為yi=xi+2,則樣本數(shù)據B中的眾數(shù)和平均數(shù)以及中位數(shù)和A中的眾數(shù),平均數(shù),中位數(shù)相差2,只有標準差沒有發(fā)生變化.故選B.考點:統(tǒng)計量的選擇.9、D【解題分析】
眾數(shù)是一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據,注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù).【題目詳解】數(shù)據36出現(xiàn)了10次,次數(shù)最多,所以眾數(shù)為36,一共有20個數(shù)據,位置處于中間的數(shù)是:36,36,所以中位數(shù)是(36+36)÷2=36.故選D.【題目點撥】考查中位數(shù)與眾數(shù),掌握眾數(shù)是一組數(shù)據中出現(xiàn)次數(shù)最多的數(shù)據,注意眾數(shù)可以不止一個;找中位數(shù)要把數(shù)據按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù)是解題的關鍵.10、A【解題分析】
先確定拋物線y=x2的頂點坐標為(0,0),再根據點平移的規(guī)律得到點(0,0)平移后所得對應點的坐標為(-2,-1),然后根據頂點式寫出平移后的拋物線解析式.【題目詳解】拋物線y=x2的頂點坐標為(0,0),把點(0,0)向左平移1個單位,再向下平移2個單位長度所得對應點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.
故選A.11、D【解題分析】
根據中心對稱圖形的定義解答即可.【題目詳解】選項A不是中心對稱圖形;選項B不是中心對稱圖形;選項C不是中心對稱圖形;選項D是中心對稱圖形.故選D.【題目點撥】本題考查了中心對稱圖形的定義,熟練運用中心對稱圖形的定義是解決問題的關鍵.12、C【解題分析】
通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應用兩次勾股定理分別求BE和a.【題目詳解】過點D作DE⊥BC于點E.由圖象可知,點F由點A到點D用時為as,△FBC的面積為acm1..∴AD=a.∴DE?AD=a.∴DE=1.當點F從D到B時,用s.∴BD=.Rt△DBE中,BE=,∵四邊形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故選C.【題目點撥】本題綜合考查了菱形性質和一次函數(shù)圖象性質,解答過程中要注意函數(shù)圖象變化與動點位置之間的關系.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解題分析】
A點到-1的距離等于直角三角形斜邊的長度,應用勾股定理求解出直角三角形斜邊長度即可.【題目詳解】解:直角三角形斜邊長度為,則A點到-1的距離等于,則A點所表示的數(shù)為:﹣1+【題目點撥】本題考查了利用勾股定理求解數(shù)軸上點所表示的數(shù).14、【解題分析】
二次根式的加減運算,先化為最簡二次根式,再將被開方數(shù)相同的二次根式進行合并.【題目詳解】.【題目點撥】考點:二次根式的加減法.15、B【解題分析】
根據平行四邊形的判定與矩形的判定定理,即可求得答案.【題目詳解】∵對角線互相平分的四邊形是平行四邊形,對角線相等的平行四邊形是矩形,∴對角線相等且互相平分的四邊形一定是矩形.故選B.【題目點撥】此題考查了平行四邊形,矩形,菱形以及等腰梯形的判定定理.此題比較簡單,解題的關鍵是熟記定理.16、1【解題分析】
把點(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.【題目詳解】∵二次函數(shù)y=x2﹣x﹣1的圖象與x軸的一個交點為(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.故答案為:1.【題目點撥】本題考查了拋物線與x軸的交點問題,求代數(shù)式的值的應用,解答此題的關鍵是求出m2﹣m=1,難度適中.17、10【解題分析】
連接OC,當CD⊥OA時CD的值最小,然后根據垂徑定理和勾股定理求解即可.【題目詳解】連接OC,當CD⊥OA時CD的值最小,∵OA=13,AB=1,∴OB=13-1=12,∴BC=,∴CD=5×2=10.故答案為10.【題目點撥】本題考查了垂徑定理及勾股定理,垂徑定理是:垂直與弦的直徑平分這條弦,并且平分這條弦所對的兩段弧
.18、3【解題分析】試題解析:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴DE考點:平行線分線段成比例.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)點A'的坐標為(-3,3)【解題分析】
解:(1),△A′'B′'C′'如圖所示.(2)點A'的坐標為(-3,3).20、(1)①45°,②;(2)線段AH與AB+AC之間的數(shù)量關系:2AH=AB+AC.證明見解析.【解題分析】
(1)①先根據角平分線的定義可得∠BAD=∠CAD=30°,由等腰三角形的性質得∠B=75°,最后利用三角形內角和可得∠ACB=45°;②如圖1,作高線DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE=,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的長;(2)如圖2,延長AB和CH交于點F,取BF的中點G,連接GH,易證△ACH≌△AFH,則AC=AF,HC=HF,根據平行線的性質和等腰三角形的性質可得AG=AH,再由線段的和可得結論.【題目詳解】(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°;②如圖1,過D作DE⊥AC交AC于點E,在Rt△ADE中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在Rt△CDE中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在Rt△ACH中,∵∠DAC=30°,∴CH=AC=∴AH==;(2)線段AH與AB+AC之間的數(shù)量關系:2AH=AB+AC.證明:如圖2,延長AB和CH交于點F,取BF的中點G,連接GH.易證△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【題目點撥】本題是三角形的綜合題,難度適中,考查了三角形全等的性質和判定、等腰三角形的性質和判定、勾股定理、三角形的中位線定理等知識,熟練掌握這些性質是本題的關鍵,第(2)問構建等腰三角形是關鍵.21、(1)時,S最大為(1)(-1,1)或或或(1,-1)【解題分析】試題分析:(1)先假設出函數(shù)解析式,利用三點法求解函數(shù)解析式.(2)設出M點的坐標,利用S=S△AOM+S△OBM﹣S△AOB即可進行解答;(1)當OB是平行四邊形的邊時,表示出PQ的長,再根據平行四邊形的對邊相等列出方程求解即可;當OB是對角線時,由圖可知點A與P應該重合,即可得出結論.試題解析:解:(1)設此拋物線的函數(shù)解析式為:y=ax2+bx+c(a≠0),將A(-1,0),B(0,-1),C(1,0)三點代入函數(shù)解析式得:解得,所以此函數(shù)解析式為:.(2)∵M點的橫坐標為m,且點M在這條拋物線上,∴M點的坐標為:(m,),∴S=S△AOM+S△OBM-S△AOB=×1×(-)+×1×(-m)-×1×1=-(m+)2+,當m=-時,S有最大值為:S=-.(1)設P(x,).分兩種情況討論:①當OB為邊時,根據平行四邊形的性質知PB∥OQ,∴Q的橫坐標的絕對值等于P的橫坐標的絕對值,又∵直線的解析式為y=-x,則Q(x,-x).由PQ=OB,得:|-x-()|=1解得:x=0(不合題意,舍去),-1,,∴Q的坐標為(-1,1)或或;②當BO為對角線時,如圖,知A與P應該重合,OP=1.四邊形PBQO為平行四邊形則BQ=OP=1,Q橫坐標為1,代入y=﹣x得出Q為(1,﹣1).綜上所述:Q的坐標為:(-1,1)或或或(1,-1).點睛:本題是對二次函數(shù)的綜合考查,有待定系數(shù)法求二次函數(shù)解析式,三角形的面積,二次函數(shù)的最值問題,平行四邊形的對邊相等的性質,平面直角坐標系中兩點間的距離的表示,綜合性較強,但難度不大,仔細分析便不難求解.22、(2)見解析;(2)k<2.【解題分析】
(2)根據方程的系數(shù)結合根的判別式,可得△=(k-2)2≥2,由此可證出方程總有兩個實數(shù)根;(2)利用分解因式法解一元二次方程,可得出x=2、x=k+2,根據方程有一根小于2,即可得出關于k的一元一次不等式,解之即可得出k的取值范圍.【題目詳解】(2)證明:∵在方程中,△=[-(k+3)]-4×2×(2k+2)=k-2k+2=(k-2)≥2,∴方程總有兩個實數(shù)根.(2)∵x-(k+3)x+2k+2=(x-2)(x-k-2)=2,∴x=2,x=k+2.∵方程有一根小于2,∴k+2<2,解得:k<2,∴k的取值范圍為k<2.【題目點撥】此題考查根的判別式,解題關鍵在于掌握運算公式.23、(1)且,;(2)當m=1時,方程的整數(shù)根為0和3.【解題分析】
(1)先解出分式方程①的解,根據分式的意義和方程①的根為非負數(shù)得出的取值;
(2)根據根與系數(shù)的關系得到x1+x2=3,,根據方程的兩個根都是整數(shù)可得m=1或.結合(1)的結論可知m1.解方程即可.【題目詳解】解:(1)∵關于x的分式方程的根為非負數(shù),∴且.又∵,且,∴解得且.又∵方程為一元二次方程,∴.綜上可得:且,.(2)∵一元二次方程有兩個整數(shù)根x1、x2,m為整數(shù),∴x1+x2=3,,∴為整數(shù),∴m=1或.又∵且,,∴m1.當m=1時,原方程可化為.解得:,.∴當m=1時,方程的整數(shù)根為0和3.【題目點撥】考查了解分式方程,一元二次方程根與系數(shù)的關系,解一元二次方程等,熟練掌握方程的解法是解題的關鍵.24、(1);(2)x>1;(3)P(﹣,0)或(,0)【解題分析】分析:(1)求得A(1,3),把A(1,3)代入雙曲線y=,可得y與x之間的函數(shù)關系式;(2)依據A(1,3),可得當x>0時,不等式x+b>的解集為x>1;(3)分兩種情況進行討論,AP把△ABC的面積分成1:3兩部分,則CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,進而得出點P的坐標.詳解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入雙曲線y=,可得k=1×3=3,∴y與x之間的函數(shù)關系式為:y=;(2)∵A(1,3),∴當x>0時,不等式x+b>的解集為:x>1;(3)y1=﹣x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保時捷卡宴購買合同范本
- 專家顧問聘用合同范本
- 毛紡織行業(yè)分析報告
- 制定合同范本目
- 中介商鋪合同范例
- 公墓物業(yè)維修合同范本
- 眾籌餐廳合同范本
- 個人獨資加油站合同范本
- 農村電廠維修合同范例
- 個人建設用地合同范例
- 骨科的疼痛管理
- 前列腺癌診斷治療指南
- 中國銀行招聘筆試真題「英語」
- 江蘇省2023年對口單招英語試卷及答案
- GB/T 35506-2017三氟乙酸乙酯(ETFA)
- GB/T 25784-20102,4,6-三硝基苯酚(苦味酸)
- 特種設備安全監(jiān)察指令書填寫規(guī)范(特種設備安全法)參考范本
- 硬筆書法全冊教案共20課時
- 《長方形的面積》-完整版課件
- 五年級上冊英語Module6Unit1Youcanplaybasketballwell外研社課件
- 工業(yè)企業(yè)現(xiàn)場監(jiān)測工況核查表
評論
0/150
提交評論