版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
天津市和平區(qū)二十中學2024屆中考數(shù)學模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,二次函數(shù)y=ax1+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=1,且OA=OC.則下列結論:①abc>0;②9a+3b+c>0;③c>﹣1;④關于x的方程ax1+bx+c=0(a≠0)有一個根為﹣;⑤拋物線上有兩點P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,則y1>y1.其中正確的結論有()A.1個 B.3個 C.4個 D.5個2.如果,那么的值為()A.1 B.2 C. D.3.下列四個圖形中,是中心對稱圖形的是()A. B. C. D.4.全球芯片制造已經(jīng)進入10納米到7納米器件的量產時代.中國自主研發(fā)的第一臺7納米刻蝕機,是芯片制造和微觀加工最核心的設備之一,7納米就是0.000000007米.數(shù)據(jù)0.000000007用科學記數(shù)法表示為()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣105.碳納米管的硬度與金剛石相當,卻擁有良好的柔韌性,可以拉伸,我國某物理所研究組已研制出直徑為0.5納米的碳納米管,1納米=0.000000001米,則0.5納米用科學記數(shù)法表示為()A.0.5×10﹣9米 B.5×10﹣8米 C.5×10﹣9米 D.5×10﹣10米6.當函數(shù)y=(x-1)2-2的函數(shù)值y隨著x的增大而減小時,x的取值范圍是()A. B. C. D.x為任意實數(shù)7.如圖,在5×5的方格紙中將圖①中的圖形N平移到如圖②所示的位置,那么下列平移正確的是()A.先向下移動1格,再向左移動1格 B.先向下移動1格,再向左移動2格C.先向下移動2格,再向左移動1格 D.先向下移動2格,再向左移動2格8.如圖,已知兩個全等的直角三角形紙片的直角邊分別為、,將這兩個三角形的一組等邊重合,拼合成一個無重疊的幾何圖形,其中軸對稱圖形有()A.3個; B.4個; C.5個; D.6個.9.下列運算,結果正確的是()A.m2+m2=m4 B.2m2n÷mn=4mC.(3mn2)2=6m2n4 D.(m+2)2=m2+410.如圖,小明從A處出發(fā)沿北偏西30°方向行走至B處,又沿南偏西50°方向行走至C處,此時再沿與出發(fā)時一致的方向行走至D處,則∠BCD的度數(shù)為()A.100° B.80° C.50° D.20°11.下列運算正確的()A.(b2)3=b5 B.x3÷x3=x C.5y3?3y2=15y5 D.a+a2=a312.若m,n是一元二次方程x2﹣2x﹣1=0的兩個不同實數(shù)根,則代數(shù)式m2﹣m+n的值是()A.﹣1 B.3 C.﹣3 D.1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.化簡的結果等于__.14.計算:﹣22÷(﹣)=_____.15.一組數(shù)據(jù)1,4,4,3,4,3,4的眾數(shù)是_____.16.如圖,已知正八邊形ABCDEFGH內部△ABE的面積為6cm1,則正八邊形ABCDEFGH面積為_____cm1.17.唐老師為了了解學生的期末數(shù)學成績,在班級隨機抽查了10名學生的成績,其統(tǒng)計數(shù)據(jù)如下表:分數(shù)(單位:分)10090807060人數(shù)14212則這10名學生的數(shù)學成績的中位數(shù)是_____分.18.分解因式a3﹣6a2+9a=_________________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.(1)如圖1,當點E在邊BC上時,求證DE=EB;(2)如圖2,當點E在△ABC內部時,猜想ED和EB數(shù)量關系,并加以證明;(1)如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.20.(6分)已知點E為正方形ABCD的邊AD上一點,連接BE,過點C作CN⊥BE,垂足為M,交AB于點N.(1)求證:△ABE≌△BCN;(2)若N為AB的中點,求tan∠ABE.21.(6分)一艘貨輪往返于上下游兩個碼頭之間,逆流而上需要6小時,順流而下需要4小時,若船在靜水中的速度為20千米/時,則水流的速度是多少千米/時?22.(8分)解不等式組并寫出它的所有整數(shù)解.23.(8分)《楊輝算法》中有這么一道題:“直田積八百六十四步,只云長闊共六十步,問長多幾何?”意思是:一塊矩形田地的面積為864平方步,只知道它的長與寬共60步,問它的長比寬多了多少步?24.(10分)如圖,四邊形ABCD內接于⊙O,BD是⊙O的直徑,AE⊥CD于點E,DA平分∠BDE.(1)求證:AE是⊙O的切線;(2)如果AB=4,AE=2,求⊙O的半徑.25.(10分)先化簡,再求值,,其中x=1.26.(12分)計算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.27.(12分)(問題情境)張老師給愛好學習的小軍和小俊提出這樣的一個問題:如圖1,在△ABC中,AB=AC,點P為邊BC上任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當點P在BC延長線上時,其余條件不變,求證:PD﹣PE=CF;請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:[結論運用]如圖4,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點,ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點,連接DM、CN,求△DEM與△CEN的周長之和.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】
根據(jù)拋物線的圖象與系數(shù)的關系即可求出答案.【題目詳解】解:由拋物線的開口可知:a<0,由拋物線與y軸的交點可知:c<0,由拋物線的對稱軸可知:>0,∴b>0,∴abc>0,故①正確;令x=3,y>0,∴9a+3b+c>0,故②正確;∵OA=OC<1,∴c>﹣1,故③正確;∵對稱軸為直線x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴當x=﹣c時,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴設關于x的方程ax1+bx+c=0(a≠0)有一個根為x,∴x﹣c=4,∴x=c+4=,故④正確;∵x1<1<x1,∴P、Q兩點分布在對稱軸的兩側,∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到對稱軸的距離小于x1到對稱軸的距離,∴y1>y1,故⑤正確.故選D.【題目點撥】本題考查的是二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)y=ax1+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.本題屬于中等題型.2、D【解題分析】
先對原分式進行化簡,再尋找化簡結果與已知之間的關系即可得出答案.【題目詳解】故選:D.【題目點撥】本題主要考查分式的化簡求值,掌握分式的基本性質是解題的關鍵.3、D【解題分析】試題分析:根據(jù)中心對稱圖形的定義,結合選項所給圖形進行判斷即可.解:A、不是中心對稱圖形,故本選項錯誤;B、不是中心對稱圖形,故本選項錯誤;C、不是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,故本選項正確;故選D.考點:中心對稱圖形.4、C【解題分析】
本題根據(jù)科學記數(shù)法進行計算.【題目詳解】因為科學記數(shù)法的標準形式為a×(1≤|a|≤10且n為整數(shù)),因此0.000000007用科學記數(shù)法法可表示為7×,故選C.【題目點撥】本題主要考察了科學記數(shù)法,熟練掌握科學記數(shù)法是本題解題的關鍵.5、D【解題分析】解:0.5納米=0.5×0.000000001米=0.0000000005米=5×10﹣10米.故選D.點睛:在負指數(shù)科學計數(shù)法中,其中,n等于第一個非0數(shù)字前所有0的個數(shù)(包括下數(shù)點前面的0).6、B【解題分析】分析:利用二次函數(shù)的增減性求解即可,畫出圖形,可直接看出答案.詳解:對稱軸是:x=1,且開口向上,如圖所示,∴當x<1時,函數(shù)值y隨著x的增大而減?。还蔬xB.點睛:本題主要考查了二次函數(shù)的性質,解題的關鍵是熟記二次函數(shù)的性質.7、C【解題分析】
根據(jù)題意,結合圖形,由平移的概念求解.【題目詳解】由方格可知,在5×5方格紙中將圖①中的圖形N平移后的位置如圖②所示,那么下面平移中正確的是:先向下移動2格,再向左移動1格,故選C.【題目點撥】本題考查平移的基本概念及平移規(guī)律,是比較簡單的幾何圖形變換.關鍵是要觀察比較平移前后物體的位置.8、B【解題分析】分析:直接利用軸對稱圖形的性質進而分析得出答案.詳解:如圖所示:將這兩個三角形的一組等邊重合,拼合成一個無重疊的幾何圖形,其中軸對稱圖形有4個.故選B.點睛:本題主要考查了全等三角形的性質和軸對稱圖形,正確把握軸對稱圖形的性質是解題的關鍵.9、B【解題分析】
直接利用積的乘方運算法則、合并同類項法則和單項式除以單項式運算法則計算得出答案.【題目詳解】A.m2+m2=2m2,故此選項錯誤;B.2m2n÷mn=4m,正確;C.(3mn2)2=9m2n4,故此選項錯誤;D.(m+2)2=m2+4m+4,故此選項錯誤.故答案選:B.【題目點撥】本題考查了乘方運算法則、合并同類項法則和單項式除以單項式運算法則,解題的關鍵是熟練的掌握乘方運算法則、合并同類項法則和單項式除以單項式運算法則.10、B【解題分析】解:如圖所示:由題意可得:∠1=30°,∠3=50°,則∠2=30°,故由DC∥AB,則∠4=30°+50°=80°.故選B.點睛:此題主要考查了方向角的定義,正確把握定義得出∠3的度數(shù)是解題關鍵.11、C【解題分析】分析:直接利用冪的乘方運算法則以及同底數(shù)冪的除法運算法則、單項式乘以單項式和合并同類項法則.詳解:A、(b2)3=b6,故此選項錯誤;B、x3÷x3=1,故此選項錯誤;C、5y3?3y2=15y5,正確;D、a+a2,無法計算,故此選項錯誤.故選C.點睛:此題主要考查了冪的乘方運算以及同底數(shù)冪的除法運算、單項式乘以單項式和合并同類項,正確掌握相關運算法則是解題關鍵.12、B【解題分析】
把m代入一元二次方程,可得,再利用兩根之和,將式子變形后,整理代入,即可求值.【題目詳解】解:∵若,是一元二次方程的兩個不同實數(shù)根,∴,∴∴故選B.【題目點撥】本題考查了一元二次方程根與系數(shù)的關系,及一元二次方程的解,熟記根與系數(shù)關系的公式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解題分析】
先通分變?yōu)橥帜阜质?,然后根?jù)分式的減法法則計算即可.【題目詳解】解:原式.故答案為:.【題目點撥】此題考查的是分式的減法,掌握分式的減法法則是解決此題的關鍵.14、1【解題分析】解:原式==1.故答案為1.15、1【解題分析】
本題考查了統(tǒng)計的有關知識,眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.【題目詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故答案為1.【題目點撥】本題為統(tǒng)計題,考查了眾數(shù)的定義,是基礎題型.16、14【解題分析】
取AE中點I,連接IB,則正八邊形ABCDEFGH是由8個與△IDE全等的三角形構成.【題目詳解】解:取AE中點I,連接IB.則正八邊形ABCDEFGH是由8個與△IAB全等的三角形構成.∵I是AE的中點,∴S△IAB=12S則圓內接正八邊形ABCDEFGH的面積為:8×3=14cm1.
故答案為14.【題目點撥】本題考查正多邊形的性質,解答此題的關鍵是作出輔助線構造出三角形.17、1【解題分析】
根據(jù)中位數(shù)的概念求解即可.【題目詳解】這組數(shù)據(jù)按照從小到大的順序排列為:60,60,70,80,80,90,90,90,90,100,則中位數(shù)為:=1.故答案為:1.【題目點撥】本題考查了中位數(shù)的概念:將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).18、a(a﹣3)1.【解題分析】a3﹣6a1+9a=a(a1﹣6a+9)=a(a﹣3)1.故答案為a(a﹣3)1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解題分析】
(1)、根據(jù)等邊三角形的性質得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據(jù)△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據(jù)題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設CG=a,則AG=5a,OD=a,根據(jù)題意列出一元一次方程求出a的值得出答案.【題目詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=1,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,設CG=a,則AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+1+1,解得,a=2,即CG=2.20、(1)證明見解析;(2)1【解題分析】
(1)根據(jù)正方形的性質得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根據(jù)垂線和三角形內角和定理得到∠2+∠3=90°,推出∠1=∠3,根據(jù)ASA推出△ABE≌△BCN;(2)tan∠ABE=AEAB【題目詳解】(1)證明:∵四邊形ABCD為正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∠A=∴△ABE≌△BCN(ASA);(2)∵N為AB中點,∴BN=12又∵△ABE≌△BCN,∴AE=BN=12在Rt△ABE中,tan∠ABE═AEAB【題目點撥】本題主要考查了正方形的性質、三角形的內角和定理、垂線、全等三角形的性質和判定以及銳角三角函數(shù)等知識點的掌握和理解,證出△ABE≌△BCN是解此題的關鍵.21、1千米/時【解題分析】
設水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據(jù)由貨輪往返兩個碼頭之間,可知順水航行的距離與逆水航行的距離相等列出方程,解方程即可求解.【題目詳解】設水流的速度是x千米/時,則順流的速度為(20+x)千米/時,逆流的速度為(20﹣x)千米/時,根據(jù)題意得:6(20﹣x)=1(20+x),解得:x=1.答:水流的速度是1千米/時.【題目點撥】本題考查了一元一次方程的應用,讀懂題意,找出等量關系,設出未知數(shù)后列出方程是解決此類題目的基本思路.22、不等式組的整數(shù)解有﹣1、0、1.【解題分析】
先解不等式組,求得不等式組的解集,再確定不等式組的整數(shù)解即可.【題目詳解】,解不等式①可得,x>-2;解不等式②可得,x≤1;∴不等式組的解集為:﹣2<x≤1,∴不等式組的整數(shù)解有﹣1、0、1.【題目點撥】本題考查了解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則求不等式組的解集是解答本題的關鍵.23、12【解題分析】
設矩形的長為x步,則寬為(60﹣x)步,根據(jù)題意列出方程,求出方程的解即可得到結果.【題目詳解】解:設矩形的長為x步,則寬為(60﹣x)步,依題意得:x(60﹣x)=864,整理得:x2﹣60x+864=0,解得:x=36或x=24(不合題意,舍去),∴60﹣x=60﹣36=24(步),∴36﹣24=12(步),則該矩形的長比寬多12步.【題目點撥】此題考查了一元二次方程的應用,找出題中的等量關系是解本題的關鍵.24、(1)見解析;(1)⊙O半徑為【解題分析】
(1)連接OA,利用已知首先得出OA∥DE,進而證明OA⊥AE就能得到AE是⊙O的切線;(1)通過證明△BAD∽△AED,再利用對應邊成比例關系從而求出⊙O半徑的長.【題目詳解】解:(1)連接OA,∵OA=OD,∴∠1=∠1.∵DA平分∠BDE,∴∠1=∠2.∴∠1=∠2.∴OA∥DE.∴∠OAE=∠4,∵AE⊥CD,∴∠4=90°.∴∠OAE=90°,即OA⊥AE.又∵點A在⊙O上,∴AE是⊙O的切線.(1)∵BD是⊙O的直徑,∴∠BAD=90°.∵∠3=90°,∴∠BAD=∠3.又∵∠1=∠2,∴△BAD∽△AED.∴,∵BA=4,AE=1,∴BD=1AD.在Rt△BAD中,根據(jù)勾股定理,得BD=.∴⊙O半徑為.25、1.【解題分析】
先根據(jù)分式的運算法則進行化簡,再代入求值.【題目詳解】解:原式=()×=×=;將x=1代入原式==1.【題目點撥】分式的化簡求值26、【解題分析】分析:按照實數(shù)的運算順序進行運算即可.詳解:原式點睛:本題考查實數(shù)的運算,主要考查零次冪,負整數(shù)指數(shù)冪,特殊角的三角函數(shù)值以及二次根式,熟練掌握各個知識點是解題的關鍵.27、小軍的證明:見解析;小俊的證明:見解析;[變式探究]見解析;[結論運用]PG+PH的值為1;[遷移拓展](6+2)dm【解題分析】
小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過點P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過點C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結論運用]過點E作EQ⊥BC,先根據(jù)矩形的性質求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長AD,BC交于點F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點即可得到答案.【題目詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過點P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過點C,作CG⊥DP,如圖③,∵PD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 測繪管理與法律法規(guī)-注冊測繪師《測繪管理與法律法規(guī)》模擬試卷4
- 科技輔助醫(yī)療家屬如何利用科技幫助血液病患者
- 課題申報參考:老齡化與人口均衡發(fā)展研究
- 課題申報參考:空間耦合視角下城市藍綠景觀對居民情感的協(xié)同提升機制與調控對策
- 科技農業(yè)裝備升級與教育同步發(fā)展
- 小腸健康管理在醫(yī)療科技發(fā)展中的應用
- 教育行業(yè)多元化發(fā)展下的少兒英語培訓招生活動挑戰(zhàn)與機遇
- 2024年H-系列卷材涂料項目資金申請報告
- 小學科學項目式學習的教學策略研究
- 科技在改善孕婦生活質量中的應用研究
- 廣東省佛山市2025屆高三高中教學質量檢測 (一)化學試題(含答案)
- 人教版【初中數(shù)學】知識點總結-全面+九年級上冊數(shù)學全冊教案
- 2024-2025學年人教版七年級英語上冊各單元重點句子
- 2025新人教版英語七年級下單詞表
- 公司結算資金管理制度
- 2024年小學語文教師基本功測試卷(有答案)
- 未成年入職免責協(xié)議書
- 項目可行性研究報告評估咨詢管理服務方案1
- 5歲幼兒數(shù)學練習題
- 2024年全國體育單招英語考卷和答案
- 食品安全管理制度可打印【7】
評論
0/150
提交評論