云南省玉溪市新平縣2024屆中考聯考數學試卷含解析_第1頁
云南省玉溪市新平縣2024屆中考聯考數學試卷含解析_第2頁
云南省玉溪市新平縣2024屆中考聯考數學試卷含解析_第3頁
云南省玉溪市新平縣2024屆中考聯考數學試卷含解析_第4頁
云南省玉溪市新平縣2024屆中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省玉溪市新平縣2024屆中考聯考數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.對于任意實數k,關于x的方程的根的情況為A.有兩個相等的實數根 B.沒有實數根C.有兩個不相等的實數根 D.無法確定2.圖1~圖4是四個基本作圖的痕跡,關于四條?、?、②、③、④有四種說法:?、偈且設為圓心,任意長為半徑所畫的弧;?、谑且訮為圓心,任意長為半徑所畫的??;?、凼且訟為圓心,任意長為半徑所畫的??;弧④是以P為圓心,任意長為半徑所畫的??;其中正確說法的個數為()A.4 B.3 C.2 D.13.如圖:A、B、C、D四點在一條直線上,若AB=CD,下列各式表示線段AC錯誤的是()A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB4.下列事件是必然事件的是()A.任意作一個平行四邊形其對角線互相垂直B.任意作一個矩形其對角線相等C.任意作一個三角形其內角和為D.任意作一個菱形其對角線相等且互相垂直平分5.如圖,在平面直角坐標系中,△ABC與△A1B1C1是以點P為位似中心的位似圖形,且頂點都在格點上,則點P的坐標為()A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)6.已知拋物線y=ax2+bx+c與反比例函數y=的圖象在第一象限有一個公共點,其橫坐標為1,則一次函數y=bx+ac的圖象可能是(

)A.

B.

C.

D.7.2017年人口普查顯示,河南某市戶籍人口約為2536000人,則該市戶籍人口數據用科學記數法可表示為()A.2.536×104人 B.2.536×105人 C.2.536×106人 D.2.536×107人8.下列說法不正確的是()A.選舉中,人們通常最關心的數據是眾數B.從1,2,3,4,5中隨機抽取一個數,取得奇數的可能性比較大C.甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定D.數據3,5,4,1,﹣2的中位數是49.函數y=自變量x的取值范圍是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤310.已知:二次函數y=ax2+bx+c(a≠1)的圖象如圖所示,下列結論中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1兩根分別為-3,1;⑤4a+2b+c>1.其中正確的項有()A.2個 B.3個 C.4個 D.5個二、填空題(共7小題,每小題3分,滿分21分)11.如圖所示的網格是正方形網格,點P到射線OA的距離為m,點P到射線OB的距離為n,則m__________n.(填“>”,“=”或“<”)12.(2017黑龍江省齊齊哈爾市)如圖,在等腰三角形紙片ABC中,AB=AC=10,BC=12,沿底邊BC上的高AD剪成兩個三角形,用這兩個三角形拼成平行四邊形,則這個平行四邊形較長的對角線的長是______.13.一個不透明口袋里裝有形狀、大小都相同的2個紅球和4個黑球,從中任意摸出一個球恰好是紅球的概率是____.14.已知一次函數y=ax+b的圖象如圖所示,根據圖中信息請寫出不等式ax+b≥2的解集為___________.15.在我國著名的數學書九章算術中曾記載這樣一個數學問題:“今有共買羊,人出五,不足四十五;人出七,不足三,問人數、羊價各幾何?”其大意是:今有人合伙買羊,若每人出5錢,還差45錢;若每人出7錢,還差3錢,問合伙人數、羊價各是多少?設羊價為x錢,則可列關于x的方程為______.16.若實數a、b、c在數軸上對應點的位置如圖,則化簡:2|a+c|++3|a﹣b|=_____.17.如圖,AB是⊙O的直徑,弦CD交AB于點P,AP=2,BP=6,∠APC=30°,則CD的長為_______.三、解答題(共7小題,滿分69分)18.(10分)定義:如果把一條拋物線繞它的頂點旋轉180°得到的拋物線我們稱為原拋物線的“孿生拋物線”.(1)求拋物線y=x2﹣2x的“孿生拋物線”的表達式;(2)若拋物線y=x2﹣2x+c的頂點為D,與y軸交于點C,其“孿生拋物線”與y軸交于點C′,請判斷△DCC’的形狀,并說明理由:(3)已知拋物線y=x2﹣2x﹣3與y軸交于點C,與x軸正半軸的交點為A,那么是否在其“孿生拋物線”上存在點P,在y軸上存在點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形?若存在,求出P點的坐標;若不存在,說明理由.19.(5分)如圖,Rt△ABC,CA⊥BC,AC=4,在AB邊上取一點D,使AD=BC,作AD的垂直平分線,交AC邊于點F,交以AB為直徑的⊙O于G,H,設BC=x.(1)求證:四邊形AGDH為菱形;(2)若EF=y(tǒng),求y關于x的函數關系式;(3)連結OF,CG.①若△AOF為等腰三角形,求⊙O的面積;②若BC=3,則CG+9=______.(直接寫出答案).20.(8分)如圖,直線與第一象限的一支雙曲線交于A、B兩點,A在B的左邊.(1)若=4,B(3,1),求直線及雙曲線的解析式:并直接寫出不等式的解集;(2)若A(1,3),第三象限的雙曲線上有一點C,接AC、BC,設直線BC解析式為;當AC⊥AB時,求證:k為定值.21.(10分)一項工程,甲,乙兩公司合做,12天可以完成,共需付施工費102000元;如果甲,乙兩公司單獨完成此項工程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元.甲,乙兩公司單獨完成此項工程,各需多少天?若讓一個公司單獨完成這項工程,哪個公司的施工費較少?22.(10分)計算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;23.(12分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.(1)按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);(2)請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.24.(14分)先化簡,再求值:(1﹣)÷,其中a=﹣1.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】判斷一元二次方程的根的情況,只要看根的判別式的值的符號即可:∵a=1,b=,c=,∴.∴此方程有兩個不相等的實數根.故選C.2、C【解題分析】

根據基本作圖的方法即可得到結論.【題目詳解】解:(1)?、偈且設為圓心,任意長為半徑所畫的弧,正確;(2)弧②是以P為圓心,大于點P到直線的距離為半徑所畫的弧,錯誤;(3)弧③是以A為圓心,大于AB的長為半徑所畫的弧,錯誤;(4)?、苁且訮為圓心,任意長為半徑所畫的弧,正確.故選C.【題目點撥】此題主要考查了基本作圖,解決問題的關鍵是掌握基本作圖的方法.3、C【解題分析】

根據線段上的等量關系逐一判斷即可.【題目詳解】A、∵AD-CD=AC,∴此選項表示正確;B、∵AB+BC=AC,∴此選項表示正確;C、∵AB=CD,∴BD-AB=BD-CD,∴此選項表示不正確;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此選項表示正確.故答案選:C.【題目點撥】本題考查了線段上兩點間的距離及線段的和、差的知識,解題的關鍵是找出各線段間的關系.4、B【解題分析】

必然事件就是一定發(fā)生的事件,根據定義對各個選項進行判斷即可.【題目詳解】解:A、任意作一個平行四邊形其對角線互相垂直不一定發(fā)生,是隨機事件,故本選項錯誤;B、矩形的對角線相等,所以任意作一個矩形其對角線相等一定發(fā)生,是必然事件,故本選項正確;C、三角形的內角和為180°,所以任意作一個三角形其內角和為是不可能事件,故本選項錯誤;D、任意作一個菱形其對角線相等且互相垂直平分不一定發(fā)生,是隨機事件,故選項錯誤,故選:B.【題目點撥】解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.熟練掌握相關圖形的性質也是解題的關鍵.5、A【解題分析】

延長A1A、B1B和C1C,從而得到P點位置,從而可得到P點坐標.【題目詳解】如圖,點P的坐標為(-4,-3).

故選A.【題目點撥】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.6、B【解題分析】分析:根據拋物線y=ax2+bx+c與反比例函數y=的圖象在第一象限有一個公共點,可得b>0,根據交點橫坐標為1,可得a+b+c=b,可得a,c互為相反數,依此可得一次函數y=bx+ac的圖象.詳解:∵拋物線y=ax2+bx+c與反比例函數y=的圖象在第一象限有一個公共點,∴b>0,∵交點橫坐標為1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函數y=bx+ac的圖象經過第一、三、四象限.故選B.點睛:考查了一次函數的圖象,反比例函數的性質,二次函數的性質,關鍵是得到b>0,ac<0.7、C【解題分析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值≥1時,n是正數;當原數的絕對值<1時,n是負數.【題目詳解】2536000人=2.536×106人.故選C.【題目點撥】本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.8、D【解題分析】試題分析:A、選舉中,人們通常最關心的數據為出現次數最多的數,所以A選項的說法正確;B、從1,2,3,4,5中隨機抽取一個數,由于奇數由3個,而偶數有2個,則取得奇數的可能性比較大,所以B選項的說法正確;C、甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,所以C選項的說法正確;D、數據3,5,4,1,﹣2由小到大排列為﹣2,1,3,4,5,所以中位數是3,所以D選項的說法錯誤.故選D.考點:隨機事件發(fā)生的可能性(概率)的計算方法9、B【解題分析】由題意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故選B.10、B【解題分析】

根據二次函數的圖象與性質判斷即可.【題目詳解】①由拋物線開口向上知:a>1;拋物線與y軸的負半軸相交知c<1;對稱軸在y軸的右側知:b>1;所以:abc<1,故①錯誤;②對稱軸為直線x=-1,,即b=2a,所以b-2a=1.故②錯誤;③由拋物線的性質可知,當x=-1時,y有最小值,即a-b+c<(),即a﹣b<m(am+b)(m≠﹣1),故③正確;④因為拋物線的對稱軸為x=1,且與x軸的一個交點的橫坐標為1,所以另一個交點的橫坐標為-3.因此方程ax+bx+c=1的兩根分別是1,-3.故④正確;⑤由圖像可得,當x=2時,y>1,即:4a+2b+c>1,故⑤正確.故正確選項有③④⑤,故選B.【題目點撥】本題二次函數的圖象與性質,牢記公式和數形結合是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、>【解題分析】

由圖像可知在射線OP上有一個特殊點Q,點Q到射線OA的距離QD=2,點Q到射線OB的距離QC=1,于是可知∠AOP>∠BOP,利用銳角三角函數sin∠AOP>【題目詳解】由題意可知:找到特殊點Q,如圖所示:設點Q到射線OA的距離QD,點Q到射線OB的距離QC由圖可知QD=2,∴sin∠AOP=QDOP∴sin∴m∴m>n【題目點撥】本題考查了點到線的距離,熟知在直角三角形中利用三角函數來解角和邊的關系是解題關鍵.12、10,,.【解題分析】解:如圖,過點A作AD⊥BC于點D,∵△ABC邊AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如圖①所示:可得四邊形ACBD是矩形,則其對角線長為:10;如圖②所示:AD=8,連接BC,過點C作CE⊥BD于點E,則EC=8,BE=2BD=12,則BC=;如圖③所示:BD=6,由題意可得:AE=6,EC=2BE=16,故AC==.故答案為10,,.13、.【解題分析】

根據隨機事件概率大小的求法,找準兩點:①符合條件的情況數目;②全部情況的總數.二者的比值就是其發(fā)生的概率的大?。绢}目詳解】∵一個不透明口袋里裝有形狀、大小都相同的2個紅球和4個黑球,∴從中任意摸出一個球恰好是紅球的概率為:,故答案為.【題目點撥】本題考查了概率公式的應用.注意概率=所求情況數與總情況數之比.14、x≥1.【解題分析】試題分析:根據題意得當x≥1時,ax+b≥2,即不等式ax+b≥2的解集為x≥1.故答案為x≥1.考點:一次函數與一元一次不等式.15、【解題分析】

設羊價為x錢,根據題意可得合伙的人數為或,由合伙人數不變可得方程.【題目詳解】設羊價為x錢,根據題意可得方程:,故答案為:.【題目點撥】本題考查由實際問題抽象出一元一次方程,解答本題的關鍵是明確題意,列出相應的方程.16、﹣5a+4b﹣3c.【解題分析】

直接利用數軸結合二次根式、絕對值的性質化簡得出答案.【題目詳解】由數軸可得:a+c<0,b-c>0,a-b<0,故原式=-2(a+c)+b-c-3(a-b)=-2a-2c+b-c-3a+3b=-5a+4b-3c.故答案為-5a+4b-3c.【題目點撥】此題主要考查了二次根式以及絕對值的性質,正確化簡是解題關鍵.17、【解題分析】

如圖,作OH⊥CD于H,連結OC,根據垂徑定理得HC=HD,由題意得OA=4,即OP=2,在Rt△OPH中,根據含30°的直角三角形的性質計算出OH=OP=1,然后在在Rt△OHC中,利用勾股定理計算得到CH=,即CD=2CH=2.【題目詳解】解:如圖,作OH⊥CD于H,連結OC,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=,∴CD=2CH=2.故答案為2.【題目點撥】本題主要考查了圓的垂徑定理,勾股定理和含30°角的直角三角形的性質,解此題的關鍵在于作輔助線得到直角三角形,再合理利用各知識點進行計算即可三、解答題(共7小題,滿分69分)18、(1)y=-(x-1)2=-x2+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).【解題分析】

(1)當拋物線繞其頂點旋轉180°后,拋物線的頂點坐標不變,只是開口方向相反,則可根據頂點式寫出旋轉后的拋物線解析式;(2)可分別求出原拋物線和其“孿生拋物線”與y軸的交點坐標C、C′,由點的坐標可知△DCC’是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孿生拋物線”為y=-x2+2x-5,當AC為對角線時,由中點坐標可知點P不存在,當AC為邊時,分兩種情況可求得點P的坐標.【題目詳解】(1)拋物線y=x2-2x化為頂點式為y=(x-1)2-1,頂點坐標為(1,-1),由于拋物線y=x2-2x繞其頂點旋轉180°后拋物線的頂點坐標不變,只是開口方向相反,則所得拋物線解析式為y=-(x-1)2-1=-x2+2x-2;(2)△DCC'是等腰直角三角形,理由如下:∵拋物線y=x2-2x+c=(x-1)2+c-1,∴拋物線頂點為D的坐標為(1,c-1),與y軸的交點C的坐標為(0,c),∴其“孿生拋物線”的解析式為y=-(x-1)2+c-1,與y軸的交點C’的坐標為(0,c-2),∴CC'=c-(c-2)=2,∵點D的橫坐標為1,∴∠CDC'=90°,由對稱性質可知DC=DC’,∴△DCC'是等腰直角三角形;(3)∵拋物線y=x2-2x-3與y軸交于點C,與x軸正半軸的交點為A,令x=0,y=-3,令y=0時,y=x2-2x-3,解得x1=-1,x2=3,∴C(0,-3),A(3,0),∵y=x2-2x-3=(x-1)2-4,∴其“孿生拋物線”的解析式為y=-(x-1)2-4=-x2+2x-5,若A、C為平行四邊形的對角線,∴其中點坐標為(,?),設P(a,-a2+2a-5),∵A、C、P、Q為頂點的四邊形為平行四邊形,∴Q(0,a-3),∴=?,化簡得,a2+3a+5=0,△<0,方程無實數解,∴此時滿足條件的點P不存在,若AC為平行四邊形的邊,點P在y軸右側,則AP∥CQ且AP=CQ,∵點C和點Q在y軸上,∴點P的橫坐標為3,把x=3代入“孿生拋物線”的解析式y(tǒng)=-32+2×3-5=-9+6-5=-8,∴P1(3,-8),若AC為平行四邊形的邊,點P在y軸左側,則AQ∥CP且AQ=CP,∴點P的橫坐標為-3,把x=-3代入“孿生拋物線”的解析式y(tǒng)=-9-6-5=-20,∴P2(-3,-20)∴原拋物線的“孿生拋物線”上存在點P1(3,-8),P2(-3,-20),在y軸上存在點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形.【題目點撥】本題是二次函數綜合題型,主此題主要考查了根據二次函數的圖象的變換求拋物線的解析式,解題的關鍵是求出旋轉后拋物線的頂點坐標以及確定出點P的位置,注意分情況討論.19、(1)證明見解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.【解題分析】

(1)根據線段的垂直平分線的性質以及垂徑定理證明AG=DG=DH=AH即可;

(2)只要證明△AEF∽△ACB,可得解決問題;

(3)①分三種情形分別求解即可解決問題;

②只要證明△CFG∽△HFA,可得=,求出相應的線段即可解決問題;【題目詳解】(1)證明:∵GH垂直平分線段AD,∴HA=HD,GA=GD,∵AB是直徑,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四邊形AGDH是菱形.(2)解:∵AB是直徑,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∴,∴y=x2(x>0).(3)①解:如圖1中,連接DF.∵GH垂直平分線段AD,∴FA=FD,∴當點D與O重合時,△AOF是等腰三角形,此時AB=2BC,∠CAB=30°,∴AB=,∴⊙O的面積為π.如圖2中,當AF=AO時,∵AB==,∴OA=,∵AF==,∴=,解得x=4(負根已經舍棄),∴AB=,∴⊙O的面積為8π.如圖2﹣1中,當點C與點F重合時,設AE=x,則BC=AD=2x,AB=,∵△ACE∽△ABC,∴AC2=AE?AB,∴16=x?,解得x2=2﹣2(負根已經舍棄),∴AB2=16+4x2=8+8,∴⊙O的面積=π??AB2=(2+2)π綜上所述,滿足條件的⊙O的面積為π或8π或(2+2)π;②如圖3中,連接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=,∴AE=,∴OE=OA﹣AE=1,∴EG=EH==,∵EF=x2=,∴FG=﹣,AF==,AH==,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴,∴,∴CG=﹣,∴CG+9=4.故答案為4.【題目點撥】本題考查圓綜合題、相似三角形的判定和性質、垂徑定理、線段的垂直平分線的性質、菱形的判定和性質、勾股定理、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,學會用分類討論的思想思考問題.20、(1)1<x<3或x<0;(2)證明見解析.【解題分析】

(1)將B(3,1)代入,將B(3,1)代入,即可求出解析式;再根據圖像直接寫出不等式的解集;(2)過A作l∥x軸,過C作CG⊥l于G,過B作BH⊥l于H,△AGC∽△BHA,設B(m,)、C(n,),根據對應線段成比例即可得出mn=-9,聯立,得,根據根與系數的關系得,由此得出為定值.【題目詳解】解:(1)將B(3,1)代入,∴m=3,,將B(3,1)代入,∴,,∴,∴不等式的解集為1<x<3或x<0(2)過A作l∥x軸,過C作CG⊥l于G,過B作BH⊥l于H,則△AGC∽△BHA,設B(m,)、C(n,),∵,∴,∴,∴,∴mn=-9,聯立∴,∴∴,∴為定值.【題目點撥】此題主要考查反比例函數的圖像與性質,解題的關鍵是根據題意作出輔助線,再根據反比例函數的性質進行求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論