山西省朔州市朔城區(qū)第四中學(xué)2024屆中考數(shù)學(xué)模擬精編試卷含解析_第1頁
山西省朔州市朔城區(qū)第四中學(xué)2024屆中考數(shù)學(xué)模擬精編試卷含解析_第2頁
山西省朔州市朔城區(qū)第四中學(xué)2024屆中考數(shù)學(xué)模擬精編試卷含解析_第3頁
山西省朔州市朔城區(qū)第四中學(xué)2024屆中考數(shù)學(xué)模擬精編試卷含解析_第4頁
山西省朔州市朔城區(qū)第四中學(xué)2024屆中考數(shù)學(xué)模擬精編試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

山西省朔州市朔城區(qū)第四中學(xué)2024屆中考數(shù)學(xué)模擬精編試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.由一些大小相同的小正方體搭成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示該位置上的小正方體的個(gè)數(shù),那么該幾何體的主視圖是()A. B. C. D.2.如圖所示,若將△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°后得到△A1B1O,則A點(diǎn)的對應(yīng)點(diǎn)A1點(diǎn)的坐標(biāo)是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)3.如圖,在?ABCD中,對角線AC的垂直平分線分別交AD、BC于點(diǎn)E、F,連接CE,若△CED的周長為6,則?ABCD的周長為()A.6 B.12 C.18 D.244.若二次函數(shù)的圖像與軸有兩個(gè)交點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.5.方程的解是().A. B. C. D.6.甲、乙兩位同學(xué)做中國結(jié),已知甲每小時(shí)比乙少做6個(gè),甲做30個(gè)所用的時(shí)間與乙做45個(gè)所用的時(shí)間相等,求甲每小時(shí)做中國結(jié)的個(gè)數(shù).如果設(shè)甲每小時(shí)做x個(gè),那么可列方程為()A.= B.=C.= D.=7.如圖,將含60°角的直角三角板ABC繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)45°度后得到△AB′C′,點(diǎn)B經(jīng)過的路徑為弧BB′,若∠BAC=60°,AC=1,則圖中陰影部分的面積是()A. B. C. D.π8.如圖是正方體的表面展開圖,則與“前”字相對的字是()A.認(rèn) B.真 C.復(fù) D.習(xí)9.如圖,AB∥CD,∠1=45°,∠3=80°,則∠2的度數(shù)為()A.30° B.35° C.40° D.45°10.下列各式中,正確的是()A.t5·t5=2t5B.t4+t2=t6C.t3·t4=t12D.t2·t3=t5二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,自左至右,第1個(gè)圖由1個(gè)正六邊形、6個(gè)正方形和6個(gè)等邊三角形組成;第2個(gè)圖由2個(gè)正六邊形、11個(gè)正方形和10個(gè)等邊三角形組成;第3個(gè)圖由3個(gè)正六邊形、16個(gè)正方形和14個(gè)等邊三角形組成;…按照此規(guī)律,第n個(gè)圖中正方形和等邊三角形的個(gè)數(shù)之和為______個(gè).12.分解因式:(x2﹣2x)2﹣(2x﹣x2)=______.13.不等式組的最大整數(shù)解是__________.14.將直尺和直角三角尺按如圖方式擺放.若,,則________.15.如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)處,當(dāng)△為直角三角形時(shí),BE的長為.16.如圖為兩正方形ABCD、CEFG和矩形DFHI的位置圖,其中D,A兩點(diǎn)分別在CG、BI上,若AB=3,CE=5,則矩形DFHI的面積是_____.三、解答題(共8題,共72分)17.(8分)如圖,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圓⊙O上的一動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)C位于直線AB的異側(cè))連接AP、BP,延長AP到D,使PD=PB,連接BD.(1)求證:PC∥BD;(2)若⊙O的半徑為2,∠ABP=60°,求CP的長;(3)隨著點(diǎn)P的運(yùn)動(dòng),的值是否會(huì)發(fā)生變化,若變化,請說明理由;若不變,請給出證明.18.(8分)綜合與實(shí)踐﹣猜想、證明與拓廣問題情境:數(shù)學(xué)課上同學(xué)們探究正方形邊上的動(dòng)點(diǎn)引發(fā)的有關(guān)問題,如圖1,正方形ABCD中,點(diǎn)E是BC邊上的一點(diǎn),點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,直線DF交AB于點(diǎn)H,直線FB與直線AE交于點(diǎn)G,連接DG,CG.猜想證明(1)當(dāng)圖1中的點(diǎn)E與點(diǎn)B重合時(shí)得到圖2,此時(shí)點(diǎn)G也與點(diǎn)B重合,點(diǎn)H與點(diǎn)A重合.同學(xué)們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:;(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點(diǎn)E在邊BC上運(yùn)動(dòng)時(shí),(1)中結(jié)論始終成立,為證明這兩個(gè)結(jié)論,同學(xué)們展開了討論:小敏:根據(jù)軸對稱的性質(zhì),很容易得到“GF與GD的數(shù)量關(guān)系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.請你參考同學(xué)們的思路,完成證明;(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線段CG∥DF,請你說明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請?zhí)骄俊螪FG的度數(shù),并直接寫出結(jié)果(用含α的式子表示).19.(8分)如圖,在每個(gè)小正方形的邊長均為1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點(diǎn)E在小正方形的頂點(diǎn)上;(2)在方格紙中畫出以CD為對角線的矩形CMDN(頂點(diǎn)字母按逆時(shí)針順序),且面積為10,點(diǎn)M、N均在小正方形的頂點(diǎn)上;(3)連接ME,并直接寫出EM的長.20.(8分)已知:如圖,∠ABC,射線BC上一點(diǎn)D,求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點(diǎn)P在∠ABC內(nèi)部,且點(diǎn)P到∠ABC兩邊的距離相等.21.(8分)某蔬菜加工公司先后兩次收購某時(shí)令蔬菜200噸,第一批蔬菜價(jià)格為2000元/噸,因蔬菜大量上市,第二批收購時(shí)價(jià)格變?yōu)?00元/噸,這兩批蔬菜共用去16萬元.(1)求兩批次購蔬菜各購進(jìn)多少噸?(2)公司收購后對蔬菜進(jìn)行加工,分為粗加工和精加工兩種:粗加工每噸利潤400元,精加工每噸利潤800元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應(yīng)為多少噸?最大利潤是多少?22.(10分)先化簡,再求值:(x﹣2﹣)÷,其中x=.23.(12分)4月9日上午8時(shí),2017徐州國際馬拉松賽鳴槍開跑,一名歲的男子帶著他的兩個(gè)孩子一同參加了比賽,下面是兩個(gè)孩子與記者的對話:根據(jù)對話內(nèi)容,請你用方程的知識(shí)幫記者求出哥哥和妹妹的年齡.24.如圖,矩形ABCD中,點(diǎn)P是線段AD上一動(dòng)點(diǎn),O為BD的中點(diǎn),PO的延長線交BC于Q.(1)求證:OP=OQ;(2)若AD=8厘米,AB=6厘米,P從點(diǎn)A出發(fā),以1厘米/秒的速度向D運(yùn)動(dòng)(不與D重合).設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒,請用t表示PD的長;并求t為何值時(shí),四邊形PBQD是菱形.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】

由三視圖的俯視圖,從左到右依次找到最高層數(shù),再由主視圖和俯視圖之間的關(guān)系可知,最高層高度即為主視圖高度.【題目詳解】解:幾何體從左到右的最高層數(shù)依次為1,2,3,所以主視圖從左到右的層數(shù)應(yīng)該為1,2,3,故選A.【題目點(diǎn)撥】本題考查了三視圖的簡單性質(zhì),屬于簡單題,熟悉三視圖的概念,主視圖和俯視圖之間的關(guān)系是解題關(guān)鍵.2、A【解題分析】

由題意可知,點(diǎn)A與點(diǎn)A1關(guān)于原點(diǎn)成中心對稱,根據(jù)圖象確定點(diǎn)A的坐標(biāo),即可求得點(diǎn)A1的坐標(biāo).【題目詳解】由題意可知,點(diǎn)A與點(diǎn)A1關(guān)于原點(diǎn)成中心對稱,∵點(diǎn)A的坐標(biāo)是(﹣3,2),∴點(diǎn)A關(guān)于點(diǎn)O的對稱點(diǎn)A'點(diǎn)的坐標(biāo)是(3,﹣2).故選A.【題目點(diǎn)撥】本題考查了中心對稱的性質(zhì)及關(guān)于原點(diǎn)對稱點(diǎn)的坐標(biāo)的特征,熟知中心對稱的性質(zhì)及關(guān)于原點(diǎn)對稱點(diǎn)的坐標(biāo)的特征是解決問題的關(guān)鍵.3、B【解題分析】∵四邊形ABCD是平行四邊形,∴DC=AB,AD=BC,∵AC的垂直平分線交AD于點(diǎn)E,∴AE=CE,∴△CDE的周長=DE+CE+DC=DE+AE+DC=AD+DC=6,∴?ABCD的周長=2×6=12,故選B.4、D【解題分析】

由拋物線與x軸有兩個(gè)交點(diǎn)可得出△=b2-4ac>0,進(jìn)而可得出關(guān)于m的一元一次不等式,解之即可得出m的取值范圍.【題目詳解】∵拋物線y=x2-2x+m與x軸有兩個(gè)交點(diǎn),∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故選D.【題目點(diǎn)撥】本題考查了拋物線與x軸的交點(diǎn),牢記“當(dāng)△=b2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)”是解題的關(guān)鍵.5、B【解題分析】

直接解分式方程,注意要驗(yàn)根.【題目詳解】解:=0,方程兩邊同時(shí)乘以最簡公分母x(x+1),得:3(x+1)-7x=0,解這個(gè)一元一次方程,得:x=,經(jīng)檢驗(yàn),x=是原方程的解.故選B.【題目點(diǎn)撥】本題考查了解分式方程,解分式方程不要忘記驗(yàn)根.6、A【解題分析】

設(shè)甲每小時(shí)做x個(gè),乙每小時(shí)做(x+6)個(gè),根據(jù)甲做30個(gè)所用時(shí)間與乙做45個(gè)所用時(shí)間相等即可列方程.【題目詳解】設(shè)甲每小時(shí)做x個(gè),乙每小時(shí)做(x+6)個(gè),根據(jù)甲做30個(gè)所用時(shí)間與乙做45個(gè)所用時(shí)間相等可得=.故選A.【題目點(diǎn)撥】本題考查了分式方程的應(yīng)用,找到關(guān)鍵描述語,正確找出等量關(guān)系是解決問題的關(guān)鍵.7、A【解題分析】試題解析:如圖,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC?BC=.根據(jù)旋轉(zhuǎn)的性質(zhì)知△ABC≌△AB′C′,則S△ABC=S△AB′C′,AB=AB′.∴S陰影=S扇形ABB′+S△AB′C′-S△ABC==.故選A.考點(diǎn):1.扇形面積的計(jì)算;2.旋轉(zhuǎn)的性質(zhì).8、B【解題分析】分析:由平面圖形的折疊以及正方體的展開圖解題,罪域正方體的平面展開圖中相對的面一定相隔一個(gè)小正方形.詳解:由圖形可知,與“前”字相對的字是“真”.故選B.點(diǎn)睛:本題考查了正方體的平面展開圖,注意正方體的空間圖形,從相對面入手分析及解答問題.9、B【解題分析】分析:根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)解答即可.詳解:如圖,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故選B.點(diǎn)睛:此題考查平行線的性質(zhì),關(guān)鍵是根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)解答.10、D【解題分析】選項(xiàng)A,根據(jù)同底數(shù)冪的乘法可得原式=t10;選項(xiàng)B,不是同類項(xiàng),不能合并;選項(xiàng)C,根據(jù)同底數(shù)冪的乘法可得原式=t7;選項(xiàng)D,根據(jù)同底數(shù)冪的乘法可得原式=t5,四個(gè)選項(xiàng)中只有選項(xiàng)D正確,故選D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、9n+1.【解題分析】

∵第1個(gè)圖由1個(gè)正六邊形、6個(gè)正方形和6個(gè)等邊三角形組成,∴正方形和等邊三角形的和=6+6=12=9+1;∵第2個(gè)圖由11個(gè)正方形和10個(gè)等邊三角形組成,∴正方形和等邊三角形的和=11+10=21=9×2+1;∵第1個(gè)圖由16個(gè)正方形和14個(gè)等邊三角形組成,∴正方形和等邊三角形的和=16+14=10=9×1+1,…,∴第n個(gè)圖中正方形和等邊三角形的個(gè)數(shù)之和=9n+1.故答案為9n+1.12、x(x﹣2)(x﹣1)2【解題分析】

先整理出公因式(x2-2x),提取公因式后再對余下的多項(xiàng)式整理,利用提公因式法分解因式和完全平方公式法繼續(xù)進(jìn)行因式分解.【題目詳解】解:(x2?2x)2?(2x?x2)=(x2?2x)2+(x2?2x)=(x2?2x)(x2?2x+1)=x(x?2)(x?1)2故答案為x(x﹣2)(x﹣1)2【題目點(diǎn)撥】此題考查了因式分解-提公因式法和公式法,熟練掌握這兩種方法是解題的關(guān)鍵.13、【解題分析】

先求出每個(gè)不等式的解集,再確定其公共解,得到不等式組的解集,然后求其整數(shù)解.【題目詳解】解:,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整數(shù)解為0,1,1,則該不等式組的最大整數(shù)解是x=1.故答案為:1.【題目點(diǎn)撥】考查不等式組的解法及整數(shù)解的確定.求不等式組的解集,應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.14、80°.【解題分析】

由于直尺外形是矩形,根據(jù)矩形的性質(zhì)可知對邊平行,所以∠4=∠3,再根據(jù)外角的性質(zhì)即可求出結(jié)果.【題目詳解】解:如圖所示,依題意得:∠4=∠3,∵∠4=∠2+∠1=80°∴∠3=80°.故答案為80°.【題目點(diǎn)撥】本題考查了平行線的性質(zhì)和三角形外角的性質(zhì),掌握三角形外角的性質(zhì)是解題的關(guān)鍵.15、1或.【解題分析】

當(dāng)△CEB′為直角三角形時(shí),有兩種情況:

①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如答圖1所示.

連結(jié)AC,先利用勾股定理計(jì)算出AC=5,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,所以點(diǎn)A、B′、C共線,即∠B沿AE折疊,使點(diǎn)B落在對角線AC上的點(diǎn)B′處,則EB=EB′,AB=AB′=1,可計(jì)算出CB′=2,設(shè)BE=x,則EB′=x,CE=4-x,然后在Rt△CEB′中運(yùn)用勾股定理可計(jì)算出x.

②當(dāng)點(diǎn)B′落在AD邊上時(shí),如答圖2所示.此時(shí)ABEB′為正方形.【題目詳解】當(dāng)△CEB′為直角三角形時(shí),有兩種情況:

①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如答圖1所示.

連結(jié)AC,

在Rt△ABC中,AB=1,BC=4,

∴AC==5,

∵∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,

∴∠AB′E=∠B=90°,

當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,

∴點(diǎn)A、B′、C共線,即∠B沿AE折疊,使點(diǎn)B落在對角線AC上的點(diǎn)B′處,

∴EB=EB′,AB=AB′=1,

∴CB′=5-1=2,

設(shè)BE=x,則EB′=x,CE=4-x,

在Rt△CEB′中,

∵EB′2+CB′2=CE2,

∴x2+22=(4-x)2,解得,

∴BE=;

②當(dāng)點(diǎn)B′落在AD邊上時(shí),如答圖2所示.

此時(shí)ABEB′為正方形,∴BE=AB=1.

綜上所述,BE的長為或1.

故答案為:或1.16、【解題分析】

由題意先求出DG和FG的長,再根據(jù)勾股定理可求得DF的長,然后再證明△DGF∽△DAI,依據(jù)相似三角形的性質(zhì)可得到DI的長,最后依據(jù)矩形的面積公式求解即可.【題目詳解】∵四邊形ABCD、CEFG均為正方形,∴CD=AD=3,CG=CE=5,∴DG=2,在Rt△DGF中,DF==,∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,∴∠FDG=∠IDA.又∵∠DAI=∠DGF,∴△DGF∽△DAI,∴,即,解得:DI=,∴矩形DFHI的面積是=DF?DI=,故答案為:.【題目點(diǎn)撥】本題考查了正方形的性質(zhì),矩形的性質(zhì),相似三角形的判定和性質(zhì),三角形的面積,熟練掌握相關(guān)性質(zhì)定理與判定定理是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(2)+;(3)的值不變,.【解題分析】

(1)根據(jù)等腰三角形的性質(zhì)得到∠ABC=45°,∠ACB=90°,根據(jù)圓周角定理得到∠APB=90°,得到∠APC=∠D,根據(jù)平行線的判定定理證明;(2)作BH⊥CP,根據(jù)正弦、余弦的定義分別求出CH、PH,計(jì)算即可;(3)證明△CBP∽△ABD,根據(jù)相似三角形的性質(zhì)解答.【題目詳解】(1)證明:∵△ABC是等腰直角三角形,且AC=BC,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB為⊙O的直徑,∴∠APB=90°,∵PD=PB,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC∥BD;(2)作BH⊥CP,垂足為H,∵⊙O的半徑為2,∠ABP=60°,∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt△BCH中,CH=BC?cos∠BCH=,BH=BC?sin∠BCH=,在Rt△BHP中,PH=BH=,∴CP=CH+PH=+;(3)的值不變,∵∠BCP=∠BAP,∠CPB=∠D,∴△CBP∽△ABD,∴=,∴=,即=.【題目點(diǎn)撥】本題考查的是圓周角定理、相似三角形的判定和性質(zhì)以及銳角三角函數(shù)的概念,掌握圓周角定理、相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.18、(1)GF=GD,GF⊥GD;(2)見解析;(3)見解析;(4)90°﹣.【解題分析】

(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設(shè)∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【題目詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點(diǎn)F,A,D在同一條線上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點(diǎn)D關(guān)于直線AE的對稱點(diǎn)為點(diǎn)F,∴直線AE是線段DF的垂直平分線,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設(shè)∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如圖3,連接AF,BD,∵點(diǎn)D與點(diǎn)F關(guān)于AE對稱,∴AE是線段DF的垂直平分線,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四邊形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的對角線,∴∠ADB=∠ABD=α,在四邊形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【題目點(diǎn)撥】本題考查了正方形、菱形、相似三角形的性質(zhì),解題的根據(jù)是熟練的掌握正方形、菱形、相似三角形的性質(zhì).19、(1)畫圖見解析;(2)畫圖見解析;(3).【解題分析】

(1)直接利用直角三角形的性質(zhì)結(jié)合勾股定理得出符合題意的圖形;(2)根據(jù)矩形的性質(zhì)畫出符合題意的圖形;

(3)根據(jù)題意利用勾股定理得出結(jié)論.【題目詳解】(1)如圖所示;(2)如圖所示;(3)如圖所示,在直角三角形中,根據(jù)勾股定理得EM=.【題目點(diǎn)撥】本題考查了勾股定理與作圖,解題的關(guān)鍵是熟練的掌握直角三角形的性質(zhì)與勾股定理.20、見解析.【解題分析】

根據(jù)角平分線的性質(zhì)、線段的垂直平分線的性質(zhì)即可解決問題.【題目詳解】∵點(diǎn)P在∠ABC的平分線上,∴點(diǎn)P到∠ABC兩邊的距離相等(角平分線上的點(diǎn)到角的兩邊距離相等),∵點(diǎn)P在線段BD的垂直平分線上,∴PB=PD(線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等),如圖所示:【題目點(diǎn)撥】本題考查作圖﹣復(fù)雜作圖、角平分線的性質(zhì)、線段的垂直平分線的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題.21、(1)第一次購進(jìn)40噸,第二次購進(jìn)160噸;(2)為獲得最大利潤,精加工數(shù)量應(yīng)為150噸,最大利潤是1.【解題分析】

(1)設(shè)第一批購進(jìn)蒜薹a噸,第二批購進(jìn)蒜薹b噸.構(gòu)建方程組即可解決問題.(2)設(shè)精加工x噸,利潤為w元

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論