版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024學(xué)年山東省東平實驗中學(xué)中考數(shù)學(xué)模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,則tan∠BAC的值為()A. B.1 C. D.2.下列各圖中,∠1與∠2互為鄰補(bǔ)角的是()A. B.C. D.3.在下列四個新能源汽車車標(biāo)的設(shè)計圖中,屬于中心對稱圖形的是()A. B. C. D.4.如圖1所示,甲、乙兩車沿直路同向行駛,車速分別為20m/s和v(m/s),起初甲車在乙車前a(m)處,兩車同時出發(fā),當(dāng)乙車追上甲車時,兩車都停止行駛.設(shè)x(s)后兩車相距y(m),y與x的函數(shù)關(guān)系如圖2所示.有以下結(jié)論:①圖1中a的值為500;②乙車的速度為35m/s;③圖1中線段EF應(yīng)表示為;④圖2中函數(shù)圖象與x軸交點的橫坐標(biāo)為1.其中所有的正確結(jié)論是()A.①④ B.②③C.①②④ D.①③④5.一元二次方程的根的情況是A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判斷6.根據(jù)物理學(xué)家波義耳1662年的研究結(jié)果:在溫度不變的情況下,氣球內(nèi)氣體的壓強(qiáng)p(pa)與它的體積v(m3)的乘積是一個常數(shù)k,即pv=k(k為常數(shù),k>0),下列圖象能正確反映p與v之間函數(shù)關(guān)系的是()A. B.C. D.7.哥哥與弟弟的年齡和是18歲,弟弟對哥哥說:“當(dāng)我的年齡是你現(xiàn)在年齡的時候,你就是18歲”.如果現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,下列方程組正確的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.8.若,代數(shù)式的值是A.0 B. C.2 D.9.如圖,是的直徑,弦,垂足為點,點是上的任意一點,延長交的延長線于點,連接.若,則等于()A. B. C. D.10.已知二次函數(shù),當(dāng)自變量取時,其相應(yīng)的函數(shù)值小于0,則下列結(jié)論正確的是()A.取時的函數(shù)值小于0B.取時的函數(shù)值大于0C.取時的函數(shù)值等于0D.取時函數(shù)值與0的大小關(guān)系不確定二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,若正五邊形和正六邊形有一邊重合,則∠BAC=_____.12.如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對角線AC為邊,按逆時針方向作矩形ABCD的相似矩形AB1C1C,再連接AC1,以對角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1,…,按此規(guī)律繼續(xù)下去,則矩形ABnCnCn-1的面積為________________.13.若x=-1,則x2+2x+1=__________.14.一個兩位數(shù),個位數(shù)字比十位數(shù)字大4,且個位數(shù)字與十位數(shù)字的和為10,則這個兩位數(shù)為_______.15.如圖,在矩形ABCD中,E是AD上一點,把△ABE沿直線BE翻折,點A正好落在BC邊上的點F處,如果四邊形CDEF和矩形ABCD相似,那么四邊形CDEF和矩形ABCD面積比是__.16.《九章算術(shù)》是我國古代數(shù)學(xué)名著,書中有下列問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為:“今有直角三角形,勾(短直角邊)長為5步,股(長直角邊)長為12步,問該直角三角形能容納的正方形邊長最大是多少步?”該問題的答案是______步.三、解答題(共8題,共72分)17.(8分)先化簡,再求值:,其中滿足.18.(8分)如圖,在△ABC中,∠ABC=90°,D,E分別為AB,AC的中點,延長DE到點F,使EF=2DE.(1)求證:四邊形BCFE是平行四邊形;(2)當(dāng)∠ACB=60°時,求證:四邊形BCFE是菱形.19.(8分)在眉山市櫻花節(jié)期間,岷江二橋一端的空地上有一塊矩形的標(biāo)語牌ABCD(如圖).已知標(biāo)語牌的高AB=5m,在地面的點E處,測得標(biāo)語牌點A的仰角為30°,在地面的點F處,測得標(biāo)語牌點A的仰角為75°,且點E,F(xiàn),B,C在同一直線上,求點E與點F之間的距離.(計算結(jié)果精確到0.1m,參考數(shù)據(jù):≈1.41,≈1.73)20.(8分)如圖已知△ABC,點D是AB上一點,連接CD,請用尺規(guī)在邊AC上求作點P,使得△PBC的面積與△DBC的面積相等(保留作圖痕跡,不寫做法)21.(8分)如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)過點A、C、B的拋物線的一部分C1與經(jīng)過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標(biāo)為(0,),點M是拋物線C2:(<0)的頂點.(1)求A、B兩點的坐標(biāo);(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;(3)當(dāng)△BDM為直角三角形時,求的值.22.(10分)為了提高中學(xué)生身體素質(zhì),學(xué)校開設(shè)了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動,為了解學(xué)生對這四種體育活動的喜歡情況,在全校隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個被調(diào)查的對象必須選擇而且只能在四種體育活動中選擇一種),將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).這次調(diào)查中,一共調(diào)查了________名學(xué)生;請補(bǔ)全兩幅統(tǒng)計圖;若有3名喜歡跳繩的學(xué)生,1名喜歡足球的學(xué)生組隊外出參加一次聯(lián)誼活動,欲從中選出2人擔(dān)任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率.23.(12分)如圖,⊙O是△ABC的外接圓,點O在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線與AC的延長線相交于點P.求證:PD是⊙O的切線;求證:△ABD∽△DCP;當(dāng)AB=5cm,AC=12cm時,求線段PC的長.24.一定數(shù)量的石子可以擺成如圖所示的三角形和四邊形,古希臘科學(xué)家把1,3,6,10,15,21,…,稱為“三角形數(shù)”;把1,4,9,16,25,…,稱為“正方形數(shù)”.將三角形、正方形、五邊形都整齊的由左到右填在所示表格里:三角形數(shù)136101521a…正方形數(shù)1491625b49…五邊形數(shù)151222C5170…(1)按照規(guī)律,表格中a=___,b=___,c=___.(2)觀察表中規(guī)律,第n個“正方形數(shù)”是________;若第n個“三角形數(shù)”是x,則用含x、n的代數(shù)式表示第n個“五邊形數(shù)”是___________.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】
連接BC,由網(wǎng)格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【題目詳解】如圖,連接BC,由網(wǎng)格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【題目點撥】本題考查了銳角三角函數(shù)的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關(guān)鍵.2、D【解題分析】根據(jù)鄰補(bǔ)角的定義可知:只有D圖中的是鄰補(bǔ)角,其它都不是.故選D.3、D【解題分析】
根據(jù)中心對稱圖形的概念求解.【題目詳解】解:A.不是中心對稱圖形,本選項錯誤;B.不是中心對稱圖形,本選項錯誤;C.不是中心對稱圖形,本選項錯誤;D.是中心對稱圖形,本選項正確.故選D.【題目點撥】本題主要考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.4、A【解題分析】分析:①根據(jù)圖象2得出結(jié)論;②根據(jù)(75,125)可知:75秒時,兩車的距離為125m,列方程可得結(jié)論;③根據(jù)圖1,線段的和與差可表示EF的長;④利用待定系數(shù)法求直線的解析式,令y=0可得結(jié)論.詳解:①y是兩車的距離,所以根據(jù)圖2可知:圖1中a的值為500,此選項正確;②由題意得:75×20+500-75y=125,v=25,則乙車的速度為25m/s,故此選項不正確;③圖1中:EF=a+20x-vx=500+20x-25x=500-5x.故此選項不正確;④設(shè)圖2的解析式為:y=kx+b,把(0,500)和(75,125)代入得:,解得,∴y=-5x+500,當(dāng)y=0時,-5x+500=0,x=1,即圖2中函數(shù)圖象與x軸交點的橫坐標(biāo)為1,此選項正確;其中所有的正確結(jié)論是①④;故選A.點睛:本題考查了一次函數(shù)的應(yīng)用,根據(jù)函數(shù)圖象,讀懂題目信息,理解兩車間的距離與時間的關(guān)系是解題的關(guān)鍵.5、A【解題分析】
把a(bǔ)=1,b=-1,c=-1,代入,然后計算,最后根據(jù)計算結(jié)果判斷方程根的情況.【題目詳解】方程有兩個不相等的實數(shù)根.故選A.【題目點撥】本題考查根的判別式,把a(bǔ)=1,b=-1,c=-1,代入計算是解題的突破口.6、C【解題分析】【分析】根據(jù)題意有:pv=k(k為常數(shù),k>0),故p與v之間的函數(shù)圖象為反比例函數(shù),且根據(jù)實際意義p、v都大于0,由此即可得.【題目詳解】∵pv=k(k為常數(shù),k>0)∴p=(p>0,v>0,k>0),故選C.【題目點撥】本題考查了反比例函數(shù)的應(yīng)用,現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關(guān)鍵是確定兩個變量之間的函數(shù)關(guān)系,然后利用實際意義確定其所在的象限.7、D【解題分析】試題解析:設(shè)現(xiàn)在弟弟的年齡是x歲,哥哥的年齡是y歲,由題意得y=18-x18-y=y-x故選D.考點:由實際問題抽象出二元一次方程組8、D【解題分析】
由可得,整體代入到原式即可得出答案.【題目詳解】解:,
,
則原式.
故選:D.【題目點撥】本題主要考查整式的化簡求值,熟練掌握整式的混合運(yùn)算順序和法則及代數(shù)式的求值是解題的關(guān)鍵.9、B【解題分析】
連接BD,利用直徑得出∠ABD=65°,進(jìn)而利用圓周角定理解答即可.【題目詳解】連接BD,∵AB是直徑,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故選B.【題目點撥】此題考查圓周角定理,關(guān)鍵是利用直徑得出∠ABD=65°.10、B【解題分析】
畫出函數(shù)圖象,利用圖象法解決問題即可;【題目詳解】由題意,函數(shù)的圖象為:∵拋物線的對稱軸x=,設(shè)拋物線與x軸交于點A、B,∴AB<1,∵x取m時,其相應(yīng)的函數(shù)值小于0,∴觀察圖象可知,x=m-1在點A的左側(cè),x=m-1時,y>0,故選B.【題目點撥】本題考查二次函數(shù)圖象上的點的坐標(biāo)特征,解題的關(guān)鍵是學(xué)會利用函數(shù)圖象解決問題,體現(xiàn)了數(shù)形結(jié)合的思想.二、填空題(本大題共6個小題,每小題3分,共18分)11、132°【解題分析】解:∵正五邊形的內(nèi)角=180°-360°÷5=108°,正六邊形的內(nèi)角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案為132°.12、或【解題分析】試題分析:AC===,因為矩形都相似,且每相鄰兩個矩形的相似比=,∴=2×1=2,=,===,...,==...===.故答案為.考點:1.相似多邊形的性質(zhì);2.勾股定理;3.規(guī)律型;4.矩形的性質(zhì);5.綜合題.13、2【解題分析】
先利用完全平方公式對所求式子進(jìn)行變形,然后代入x的值進(jìn)行計算即可.【題目詳解】∵x=-1,∴x2+2x+1=(x+1)2=(-1+1)2=2,故答案為:2.【題目點撥】本題考查了代數(shù)式求值,涉及了因式分解,二次根式的性質(zhì)等,熟練掌握相關(guān)知識是解題的關(guān)鍵.14、37【解題分析】
根據(jù)題意列出一元一次方程即可求解.【題目詳解】解:設(shè)十位上的數(shù)字為a,則個位上的數(shù)為(a+4),依題意得:a+a+4=10,解得:a=3,∴這個兩位數(shù)為:37【題目點撥】本題考查了一元一次方程的實際應(yīng)用,屬于簡單題,找到等量關(guān)系是解題關(guān)鍵.15、【解題分析】由題意易得四邊形ABFE是正方形,設(shè)AB=1,CF=x,則有BC=x+1,CD=1,∵四邊形CDEF和矩形ABCD相似,∴CD:BC=FC:CD,即1:(x+1)=x:1,∴x=或x=(舍去),∴=,故答案為.【題目點撥】本題考查了折疊的性質(zhì),相似多邊形的性質(zhì)等,熟練掌握相似多邊形的面積比等于相似比的平方是解題的關(guān)鍵.16、.【解題分析】
如圖,根據(jù)正方形的性質(zhì)得:DE∥BC,則△ADE∽△ACB,列比例式可得結(jié)論.【題目詳解】如圖,∵四邊形CDEF是正方形,∴CD=ED,DE∥CF,設(shè)ED=x,則CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,∴x=,故答案為.【題目點撥】本題考查了相似三角形的判定和性質(zhì)、正方形的性質(zhì),設(shè)未知數(shù),構(gòu)建方程是解題的關(guān)鍵.三、解答題(共8題,共72分)17、,1.【解題分析】
原式括號中的兩項通分并利用同分母分式的加法法則計算,再與括號外的分式通分后利用同分母分式的加法法則計算,約分得到最簡結(jié)果,將變形為,整體代入計算即可.【題目詳解】解:原式∵,∴,∴原式【題目點撥】本題主要考查分式的化簡求值,解題的關(guān)鍵是掌握分式的混合運(yùn)算順序和運(yùn)算法則.18、(1)見解析;(2)見解析【解題分析】
(1)由題意易得,EF與BC平行且相等,利用四邊形BCFE是平行四邊形.(2)根據(jù)菱形的判定證明即可.【題目詳解】(1)證明::∵D.E為AB,AC中點∴DE為△ABC的中位線,DE=BC,∴DE∥BC,即EF∥BC,∵EF=BC,∴四邊形BCEF為平行四邊形.(2)∵四邊形BCEF為平行四邊形,∵∠ACB=60°,∴BC=CE=BE,∴四邊形BCFE是菱形.【題目點撥】本題考查平行四邊形的判定和性質(zhì)、菱形的判定、等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.19、7.3米【解題分析】
:如圖作FH⊥AE于H.由題意可知∠HAF=∠HFA=45°,推出AH=HF,設(shè)AH=HF=x,則EF=2x,EH=x,在Rt△AEB中,由∠E=30°,AB=5米,推出AE=2AB=10米,可得x+x=10,解方程即可.【題目詳解】解:如圖作FH⊥AE于H.由題意可知∠HAF=∠HFA=45°,∴AH=HF,設(shè)AH=HF=x,則EF=2x,EH=x,在Rt△AEB中,∵∠E=30°,AB=5米,∴AE=2AB=10米,∴x+x=10,∴x=5﹣5,∴EF=2x=10﹣10≈7.3米,答:E與點F之間的距離為7.3米【題目點撥】本題考查的知識點是解直角三角形的應(yīng)用-仰角俯角問題,解題的關(guān)鍵是熟練的掌握解直角三角形的應(yīng)用-仰角俯角問題.20、見解析【解題分析】
三角形的面積相等即同底等高,所以以BC為兩個三角形的公共底邊,在AC邊上尋找到與D到BC距離相等的點即可.【題目詳解】作∠CDP=∠BCD,PD與AC的交點即P.【題目點撥】本題考查了三角形面積的靈活計算,還可以利用三角形的全等來進(jìn)行解題.21、(1)A(,0)、B(3,0).(2)存在.S△PBC最大值為(3)或時,△BDM為直角三角形.【解題分析】
(1)在中令y=0,即可得到A、B兩點的坐標(biāo).(2)先用待定系數(shù)法得到拋物線C1的解析式,由S△PBC=S△POC+S△BOP–S△BOC得到△PBC面積的表達(dá)式,根據(jù)二次函數(shù)最值原理求出最大值.(3)先表示出DM2,BD2,MB2,再分兩種情況:①∠BMD=90°時;②∠BDM=90°時,討論即可求得m的值.【題目詳解】解:(1)令y=0,則,∵m<0,∴,解得:,.∴A(,0)、B(3,0).(2)存在.理由如下:∵設(shè)拋物線C1的表達(dá)式為(),把C(0,)代入可得,.∴C1的表達(dá)式為:,即.設(shè)P(p,),∴S△PBC=S△POC+S△BOP–S△BOC=.∵<0,∴當(dāng)時,S△PBC最大值為.(3)由C2可知:B(3,0),D(0,),M(1,),∴BD2=,BM2=,DM2=.∵∠MBD<90°,∴討論∠BMD=90°和∠BDM=90°兩種情況:當(dāng)∠BMD=90°時,BM2+DM2=BD2,即+=,解得:,(舍去).當(dāng)∠BDM=90°時,BD2+DM2=BM2,即+=,解得:,(舍去).綜上所述,或時,△BDM為直角三角形.22、(1)200;(2)答案見解析;(3).【解題分析】
(1)由題意得:這次調(diào)查中,一共調(diào)查的學(xué)生數(shù)為:40÷20%=200(名);(2)根據(jù)題意可求得B占的百分比為:1-20%-30%-15%=35%,C的人數(shù)為:200×30%=60(名);則可補(bǔ)全統(tǒng)計圖;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與一人是喜歡跳繩、一人是喜歡足球的學(xué)生的情況,再利用概率公式即可求得答案.【題目詳解】解:(1)根據(jù)題意得:這次調(diào)查中,一共調(diào)查的學(xué)生數(shù)為:40÷20%=200(名);故答案為:200;(2)C組人數(shù):200-40-70-30=60(名)B組百分比:70÷200×100%=35%如圖(3)分別用A,B,C表示3名喜歡跳繩的學(xué)生,D表示1名喜歡足球的學(xué)生;
畫樹狀圖得:∵共有12種等可能的結(jié)果,一人是喜歡跳繩、一人是喜歡足球的學(xué)生的有6種情況,∴一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率為:.【題目點撥】此題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖與扇形統(tǒng)計圖.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.23、(1)證明見解析;(2)證明見解析;(3)CP=16.9cm.【解題分析】【分析】(1)先判斷出∠BAC=2∠BAD,進(jìn)而判斷出∠BOD=∠BAC=90°,得出PD⊥OD即可得出結(jié)論;(2)先判斷出∠ADB=∠P,再判斷出∠DCP=∠ABD,即可得出結(jié)論;(3)先求出BC,再判斷出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出結(jié)論.【題目詳解】(1)如圖,連接OD,∵BC是⊙O的直徑,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廚房衛(wèi)生工具管理規(guī)定(3篇)
- 《工程合同管理》課程教學(xué)大綱
- 船舶側(cè)向推進(jìn)器課程設(shè)計
- 物聯(lián)網(wǎng)煙霧報警課程設(shè)計
- 生物數(shù)學(xué)的基礎(chǔ)課程設(shè)計
- 自動服務(wù)課程設(shè)計
- 2024幼兒園安全生產(chǎn)月活動工作總結(jié)范文(31篇)
- 藝術(shù)家作品課程設(shè)計
- 航空公司服務(wù)員工作總結(jié)
- 教育行業(yè)營銷策略分享
- 中學(xué)消防安全應(yīng)急演練方案
- 2.1.1 區(qū)域發(fā)展的自然環(huán)境基礎(chǔ) 課件 高二地理人教版(2019)選擇性必修2
- ASTM-A269-A269M無縫和焊接奧氏體不銹鋼管
- 中、高級鉗工訓(xùn)練圖紙
- 2024-2030年中國車載動態(tài)稱重行業(yè)投融資規(guī)模與發(fā)展態(tài)勢展望研究報告
- 乒乓球教案完整版本
- 2024年重慶公交車從業(yè)資格證考試題庫
- 銀行解押合同范本
- 2024-2030年中國紋身針行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 部編版道德與法治九年級上冊每課教學(xué)反思
- 2024云南保山電力股份限公司招聘(100人)(高頻重點提升專題訓(xùn)練)共500題附帶答案詳解
評論
0/150
提交評論