版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題4.9等比數(shù)列的前n項(xiàng)和公式(重難點(diǎn)題型精講)1.等比數(shù)列的前n項(xiàng)和公式若等比數(shù)列{SKIPIF1<0}的首項(xiàng)為SKIPIF1<0,公比為q,則等比數(shù)列{SKIPIF1<0}的前n項(xiàng)和公式為
SKIPIF1<0=SKIPIF1<0.2.等比數(shù)列前n項(xiàng)和公式與指數(shù)函數(shù)的關(guān)系(1)當(dāng)q=1時(shí),SKIPIF1<0=SKIPIF1<0是關(guān)于n的正比例函數(shù),點(diǎn)(n,SKIPIF1<0)是直線y=SKIPIF1<0x上的一群孤立的點(diǎn).(2)當(dāng)q≠1時(shí),SKIPIF1<0=SKIPIF1<0.記A=SKIPIF1<0,則SKIPIF1<0=SKIPIF1<0+A是一個(gè)指數(shù)式與一個(gè)常數(shù)的和.當(dāng)q>0且q≠1時(shí),y=SKIPIF1<0是指數(shù)函數(shù),此時(shí),點(diǎn)(n,SKIPIF1<0)是指數(shù)型函數(shù)y=SKIPIF1<0+A圖象上的一群孤立的點(diǎn).3.等比數(shù)列前n項(xiàng)和的性質(zhì)已知等比數(shù)列{SKIPIF1<0}的公比為q,前n項(xiàng)和為SKIPIF1<0,則有如下性質(zhì):
(1)SKIPIF1<0.
(2)若SKIPIF1<0(kSKIPIF1<0)均不為0,則SKIPIF1<0成等比數(shù)列,且公比為SKIPIF1<0.
(3)若{SKIPIF1<0}共有2n(nSKIPIF1<0)項(xiàng),則SKIPIF1<0=q;
若{SKIPIF1<0}共有(2n+1)(nSKIPIF1<0)項(xiàng),則SKIPIF1<0=q.4.?dāng)?shù)列求和的常用方法(1)公式法求和
①直接用等差、等比數(shù)列的求和公式.
②掌握一些常見的數(shù)列的前n項(xiàng)和公式.(2)倒序相加法求和
如果一個(gè)數(shù)列{SKIPIF1<0}中,與首、末兩項(xiàng)“等距離”的兩項(xiàng),的和相等,那么求這個(gè)數(shù)列的前n項(xiàng)和可用倒序相加法,如等差數(shù)列的前n項(xiàng)和公式即是用此法推導(dǎo)的.(3)錯(cuò)位相減法求和
錯(cuò)位相減法求和適用于SKIPIF1<0型數(shù)列,其中SKIPIF1<0、SKIPIF1<0分別是等差數(shù)列和等比數(shù)列.(4)裂項(xiàng)相消法求和
利用裂項(xiàng)相消法求和時(shí),應(yīng)注意抵消后并不一定只剩下第一項(xiàng)和最后一項(xiàng),也有可能前面剩兩項(xiàng),后面剩兩項(xiàng),再就是通項(xiàng)裂項(xiàng)后,有時(shí)需要調(diào)整前面的系數(shù),使裂項(xiàng)前后保持相等.【題型1求等比數(shù)列的通項(xiàng)公式】【方法點(diǎn)撥】根據(jù)所給條件,利用等比數(shù)列的前n項(xiàng)和,求解等比數(shù)列的基本量,即可得解.【例1】(2022·湖北·高二期中)已知在等比數(shù)列an中,a3=4,前三項(xiàng)之和S3=12A.a(chǎn)n=16?C.a(chǎn)n=4 D.a(chǎn)【變式1-1】(2022·安徽銅陵·高一期末)各項(xiàng)均為正數(shù)的等比數(shù)列an,其前n項(xiàng)和為Sn.若a2?a5=?78,SA.2n B.2n?1 C.3【變式1-2】(2022·湖南·高三階段練習(xí))設(shè)正項(xiàng)等比數(shù)列an的前n項(xiàng)和為Sn,若2S3=3A.4 B.3 C.2 D.1【變式1-3】(2022·陜西·高二階段練習(xí))等比數(shù)列{an}中,若公比A.4n?1 B.4n C.3【題型2等比數(shù)列前n項(xiàng)和的性質(zhì)】【方法點(diǎn)撥】根據(jù)題目條件,結(jié)合等比數(shù)列前n項(xiàng)和的性質(zhì),進(jìn)行轉(zhuǎn)化求解,即可得解.【例2】等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3A.488
B.508
C.511
D.567【變式2-1】(2022·全國(guó)·高二)已知等比數(shù)列an共有32項(xiàng),其公比q=3,且奇數(shù)項(xiàng)之和比偶數(shù)項(xiàng)之和少60,則數(shù)列an的所有項(xiàng)之和是(A.30 B.60 C.90 D.120【變式2-2】(2022·全國(guó)·高三專題練習(xí))已知項(xiàng)數(shù)為奇數(shù)的等比數(shù)列{an}A.5 B.7 C.9 D.11【變式2-3】(2022·全國(guó)·高三專題練習(xí))已知Sn是等比數(shù)列an的前n項(xiàng)和,若存在m∈N*,滿足S2mA.?2 B.2 C.?3 D.3【題型3求等比數(shù)列的前n項(xiàng)和】【方法點(diǎn)撥】根據(jù)條件,求出等比數(shù)列的基本量,得到首項(xiàng)和公比,利用等比數(shù)列的前n項(xiàng)和公式,進(jìn)行求解即可.【例3】(2022·北京·高三期中)已知等比數(shù)列an中,a1=1,且a5+A.15 B.31 C.63 D.64【變式3-1】(2022·天津·高二期末)已知等比數(shù)列an的前n項(xiàng)和為Sn,若an>0,公比q>1,a3+A.31 B.36 C.48 D.63【變式3-2】(2022·河北高三階段練習(xí))設(shè)正項(xiàng)等比數(shù)列an的前n項(xiàng)和為Sn,若8a1=2A.510 B.511 C.1022 D.1023【變式3-3】(2022·四川·高三期中(理))已知等比數(shù)列{an}為遞增數(shù)列,Sn是它的前n項(xiàng)和,若a3=16,且a2與a4的等差中項(xiàng)為20A.2n?2C.4n+【題型4等比數(shù)列的應(yīng)用】【方法點(diǎn)撥】對(duì)于等比數(shù)列有關(guān)的數(shù)學(xué)文化、實(shí)際問(wèn)題,讀懂其中蘊(yùn)含的數(shù)學(xué)語(yǔ)言,建立合適的等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式、求和公式進(jìn)行求解.【例4】(2022·河南濮陽(yáng)·高二期末(理))5G是第五代移動(dòng)通信技術(shù)的簡(jiǎn)稱,其意義在于萬(wàn)物互聯(lián),即所有人和物都將存在于有機(jī)的數(shù)字生態(tài)系統(tǒng)中,它把以人為中心的通信擴(kuò)展到同時(shí)以人與物為中心的通信,將會(huì)為社會(huì)生活與生產(chǎn)方式帶來(lái)巨大的變化.目前我國(guó)最高的5G基站海拔6500米.從全國(guó)范圍看,中國(guó)5G發(fā)展進(jìn)入了全面加速階段,基站建設(shè)進(jìn)度超過(guò)預(yù)期.現(xiàn)有8個(gè)工程隊(duì)共承建10萬(wàn)個(gè)基站,從第二個(gè)工程隊(duì)開始,每個(gè)工程隊(duì)所建的基站數(shù)都比前一個(gè)工程隊(duì)少16,則第一個(gè)工程隊(duì)承建的基站數(shù)(單位:萬(wàn))約為(
A.10×68C.80×67【變式4-1】(2022·四川省高三階段練習(xí)(文))中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)綜》中有這樣一個(gè)問(wèn)題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請(qǐng)公仔仔細(xì)算相還”.其大意為:“有一人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地”.則下列說(shuō)法正確的是(
)A.該人第五天走的路程為14里B.該人第三天走的路程為42里C.該人前三天共走的路程為330里D.該人最后三天共走的路程為42里【變式4-2】(2022·陜西·模擬預(yù)測(cè)(文))我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“三百七十八里關(guān),初行健步不為難.次日腳痛減一半,六朝才得到其關(guān).要見每朝行里數(shù),請(qǐng)公仔細(xì)算相還.”意思是:有一個(gè)人要走378里路,第一天走得很快,以后由于腳痛,后一天走的路程都是前一天的一半,6天剛好走完.則此人最后一天走的路程是(
)A.192里 B.96里 C.12里 D.6里【變式4-3】(2022·山東青島·高二期中)集合論是德國(guó)數(shù)學(xué)家康托爾于十九世紀(jì)末創(chuàng)立的,希爾伯特贊譽(yù)其為“數(shù)學(xué)思想的驚人產(chǎn)物,在純粹理性范疇中人類活動(dòng)的最美表現(xiàn)之一”.取一條長(zhǎng)度為1的線段,將它三等分,去掉中間一段,留下的兩段分割三等分,各去掉中間一段,留下更短的四段,……,將這樣操作一直繼續(xù)下去,直至無(wú)窮.由于在不斷分割舍棄過(guò)程中,所形成的線段的數(shù)目越來(lái)越多,長(zhǎng)度越來(lái)越小,在極限情況下,得到一個(gè)離散的點(diǎn)集,稱為康托爾三分集.若在前n次操作中共去掉的線段長(zhǎng)度之和不小于2930,則n的最小值為(
(參考數(shù)據(jù):lg2=0.3010,lgA.9 B.8 C.7 D.6【題型5等差、等比數(shù)列的綜合應(yīng)用】根據(jù)具體條件,借助等差、等比數(shù)列的通項(xiàng)公式、性質(zhì)、求和公式等進(jìn)行轉(zhuǎn)化求解即可.【例5】(2022·四川·高三期中)已知等差數(shù)列an?和等比數(shù)列bn?滿足a1=b1(1)求an(2)求和:b1【變式5-1】(2022·河北·高三階段練習(xí))已知在等比數(shù)列an中,a1+a2=4,且a1,a2+2,a(1)求an(2)設(shè)cn=2bn?a【變式5-2】(2022·山西·高三期中)記等差數(shù)列an的前n項(xiàng)和為Sn,公差為d,等比數(shù)列bn的公比為q(q>0),已知a1=(1)求an,b(2)將an,bn中相同的項(xiàng)剔除后,兩個(gè)數(shù)列中余下的項(xiàng)按從小到大的順序排列,構(gòu)成數(shù)列cn【變式5-3】(2022·黑龍江·高三階段練習(xí))設(shè)等差數(shù)列an的前n項(xiàng)和為Sn,已知a1+a3=6,a(1)求數(shù)列an與b(2)設(shè)cn=3an+54?b【題型6數(shù)列的求和】【方法點(diǎn)撥】對(duì)于具體的數(shù)列求和問(wèn)題,選擇合適的數(shù)列求和方法,進(jìn)行求解.【例6】已知數(shù)列an的首項(xiàng)a1=1(1)求證:an(2)求數(shù)列
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 簡(jiǎn)明法語(yǔ)教程課件
- 單位管理制度展示大合集【員工管理篇】
- 艾羅能源(688717)新產(chǎn)品與新市場(chǎng)老牌戶儲(chǔ)企業(yè)打開第二成長(zhǎng)曲線
- 單位管理制度收錄大合集人力資源管理十篇
- 單位管理制度品讀選集人員管理十篇
- 《口腔內(nèi)科護(hù)理評(píng)估》課件
- 2022年內(nèi)蒙古呼倫貝爾市牙克石市初中畢業(yè)生學(xué)業(yè)水平模擬測(cè)
- 2025年中國(guó)勞動(dòng)防護(hù)手套市場(chǎng)深度調(diào)研分析及投資前景研究預(yù)測(cè)報(bào)告
- 2025年中國(guó)單烷基醚磷酸酯醚行業(yè)市場(chǎng)發(fā)展前景及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 2020-2025年中國(guó)無(wú)芯卷筒紙行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y方向研究報(bào)告
- 中央2025年全國(guó)人大機(jī)關(guān)直屬事業(yè)單位招聘18人筆試歷年典型考點(diǎn)(頻考版試卷)附帶答案詳解
- 2024年度美團(tuán)平臺(tái)商家入駐服務(wù)框架協(xié)議
- 2024至2030年四氯苯醌項(xiàng)目投資價(jià)值分析報(bào)告
- 《肝衰竭診治指南(2024版)》解讀
- 2025年集體經(jīng)濟(jì)發(fā)展計(jì)劃
- 房地產(chǎn)銷售主管崗位招聘筆試題及解答(某大型央企)2024年
- 足球D級(jí)教練員培訓(xùn)匯報(bào)
- 巖溶區(qū)水文地質(zhì)參數(shù)研究-洞察分析
- 大學(xué)體育與健康 教案全套 體育舞蹈 第1-16周
- 一年級(jí)數(shù)學(xué)練習(xí)題-20以內(nèi)加減法口算題(4000道)直接打印版
- 施工作業(yè)安全管理規(guī)定(4篇)
評(píng)論
0/150
提交評(píng)論