




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆江蘇省蘇州市高新區(qū)達(dá)標(biāo)名校中考數(shù)學(xué)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列所給函數(shù)中,y隨x的增大而減小的是()A.y=﹣x﹣1 B.y=2x2(x≥0)C. D.y=x+12.下列調(diào)查中,最適合采用全面調(diào)查(普查)方式的是()A.對(duì)重慶市初中學(xué)生每天閱讀時(shí)間的調(diào)查B.對(duì)端午節(jié)期間市場(chǎng)上粽子質(zhì)量情況的調(diào)查C.對(duì)某批次手機(jī)的防水功能的調(diào)查D.對(duì)某校九年級(jí)3班學(xué)生肺活量情況的調(diào)查3.如圖,下列各數(shù)中,數(shù)軸上點(diǎn)A表示的可能是()A.4的算術(shù)平方根 B.4的立方根 C.8的算術(shù)平方根 D.8的立方根4.如圖,已知直線l1:y=﹣2x+4與直線l2:y=kx+b(k≠0)在第一象限交于點(diǎn)M.若直線l2與x軸的交點(diǎn)為A(﹣2,0),則k的取值范圍是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<25.實(shí)數(shù)a,b在數(shù)軸上的位置如圖所示,以下說法正確的是()A.a(chǎn)+b=0 B.b<a C.a(chǎn)b>0 D.|b|<|a|6.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使點(diǎn)D落在射線CA上,DE的延長(zhǎng)線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°7.已知直線與直線的交點(diǎn)在第一象限,則的取值范圍是()A. B. C. D.8.下列事件中是必然事件的是()A.早晨的太陽一定從東方升起B(yǎng).中秋節(jié)的晚上一定能看到月亮C.打開電視機(jī),正在播少兒節(jié)目D.小紅今年14歲,她一定是初中學(xué)生9.方程(m–2)x2+3mx+1=0是關(guān)于x的一元二次方程,則()A.m≠±2 B.m=2 C.m=–2 D.m≠210.已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),y隨x的增大而增大,且?2≤x≤1時(shí),y的最大值為9,則a的值為A.1或?2B.?2或2C.2D.111.□ABCD中,E、F是對(duì)角線BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF12.如圖是二次函數(shù)y=ax2+bx+c的圖象,對(duì)于下列說法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤當(dāng)x>0時(shí),y隨x的增大而減小,其中正確的是()A.①②③ B.①②④ C.②③④ D.③④⑤二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.為了綠化校園,30名學(xué)生共種78棵樹苗,其中男生每人種3棵,女生每人種2棵,設(shè)男生有x人,女生有y人,根據(jù)題意,所列方程組正確的是()A. B. C. D.14.如圖,在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(0,4),直線y=x-3與x軸、y軸分別交于點(diǎn)A、B,點(diǎn)M是直線AB上的一個(gè)動(dòng)點(diǎn),則PM的最小值為________.15.如圖,四邊形OABC是矩形,四邊形ADEF是正方形,點(diǎn)A,D在x軸的負(fù)半軸上,點(diǎn)C在y軸的正半軸上,點(diǎn)F在AB上,點(diǎn)B,E在反比例函數(shù)y=kx(k為常數(shù),k≠0)的圖像上,正方形ADEF的面積為4,且BF=2AF,則16.如圖,小明想用圖中所示的扇形紙片圍成一個(gè)圓錐,已知扇形的半徑為5cm,弧長(zhǎng)是cm,那么圍成的圓錐的高度是cm.17.已知,(),請(qǐng)用計(jì)算器計(jì)算當(dāng)時(shí),、的若干個(gè)值,并由此歸納出當(dāng)時(shí),、間的大小關(guān)系為______.18.在某一時(shí)刻,測(cè)得一根長(zhǎng)為1.5m的標(biāo)桿的影長(zhǎng)為3m,同時(shí)測(cè)得一根旗桿的影長(zhǎng)為26m,那么這根旗桿的高度為_____m.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)給定關(guān)于x的二次函數(shù)y=kx2﹣4kx+3(k≠0),當(dāng)該二次函數(shù)與x軸只有一個(gè)公共點(diǎn)時(shí),求k的值;當(dāng)該二次函數(shù)與x軸有2個(gè)公共點(diǎn)時(shí),設(shè)這兩個(gè)公共點(diǎn)為A、B,已知AB=2,求k的值;由于k的變化,該二次函數(shù)的圖象性質(zhì)也隨之變化,但也有不會(huì)變化的性質(zhì),某數(shù)學(xué)學(xué)習(xí)小組在探究時(shí)得出以下結(jié)論:①與y軸的交點(diǎn)不變;②對(duì)稱軸不變;③一定經(jīng)過兩個(gè)定點(diǎn);請(qǐng)判斷以上結(jié)論是否正確,并說明理由.20.(6分)如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點(diǎn)D.過點(diǎn)A作⊙O的切線與OD的延長(zhǎng)線交于點(diǎn)P,PC、AB的延長(zhǎng)線交于點(diǎn)F.(1)求證:PC是⊙O的切線;(2)若∠ABC=60°,AB=10,求線段CF的長(zhǎng).21.(6分)如圖所示,在?ABCD中,E是CD延長(zhǎng)線上的一點(diǎn),BE與AD交于點(diǎn)F,DE=CD.(1)求證:△ABF∽△CEB;(2)若△DEF的面積為2,求?ABCD的面積.22.(8分)如圖中的小方格都是邊長(zhǎng)為1的正方形,△ABC的頂點(diǎn)和O點(diǎn)都在正方形的頂點(diǎn)上.以點(diǎn)O為位似中心,在方格圖中將△ABC放大為原來的2倍,得到△A′B′C′;△A′B′C′繞點(diǎn)B′順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A″B′C″,并求邊A′B′在旋轉(zhuǎn)過程中掃過的圖形面積.23.(8分)已知BD平分∠ABF,且交AE于點(diǎn)D.(1)求作:∠BAE的平分線AP(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)設(shè)AP交BD于點(diǎn)O,交BF于點(diǎn)C,連接CD,當(dāng)AC⊥BD時(shí),求證:四邊形ABCD是菱形.24.(10分)如圖,拋物線y=ax2+bx﹣2經(jīng)過點(diǎn)A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點(diǎn)D是直線AC上方的拋物線上的一點(diǎn),求△DCA面積的最大值;(3)P是拋物線上一動(dòng)點(diǎn),過P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.25.(10分)如圖,已知△ABC,以A為圓心AB為半徑作圓交AC于E,延長(zhǎng)BA交圓A于D連DE并延長(zhǎng)交BC于F,(1)判斷△ABC的形狀,并證明你的結(jié)論;(2)如圖1,若BE=CE=,求⊙A的面積;(3)如圖2,若tan∠CEF=,求cos∠C的值.26.(12分)我們把兩條中線互相垂直的三角形稱為“中垂三角形”.例如圖1,圖2,圖1中,AF,BE是△ABC的中線,AF⊥BE,垂足為P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.特例探索(1)如圖1,當(dāng)∠ABE=45°,c=時(shí),a=,b=;如圖2,當(dāng)∠ABE=10°,c=4時(shí),a=,b=;歸納證明(2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想a2,b2,c2三者之間的關(guān)系,用等式表示出來,請(qǐng)利用圖1證明你發(fā)現(xiàn)的關(guān)系式;拓展應(yīng)用(1)如圖4,在□ABCD中,點(diǎn)E,F(xiàn),G分別是AD,BC,CD的中點(diǎn),BE⊥EG,AD=,AB=1.求AF的長(zhǎng).27.(12分)如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,點(diǎn)P為線段BE延長(zhǎng)線上一點(diǎn),連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點(diǎn)F.(1)求證:;(2)連接BD,請(qǐng)你判斷AC與BD有什么位置關(guān)系?并說明理由;(3)若PE=1,求△PBD的面積.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解題分析】
根據(jù)二次函數(shù)的性質(zhì)、一次函數(shù)的性質(zhì)及反比例函數(shù)的性質(zhì)判斷出函數(shù)符合y隨x的增大而減小的選項(xiàng).【題目詳解】解:A.此函數(shù)為一次函數(shù),y隨x的增大而減小,正確;B.此函數(shù)為二次函數(shù),當(dāng)x<0時(shí),y隨x的增大而減小,錯(cuò)誤;C.此函數(shù)為反比例函數(shù),在每個(gè)象限,y隨x的增大而減小,錯(cuò)誤;D.此函數(shù)為一次函數(shù),y隨x的增大而增大,錯(cuò)誤.故選A.【題目點(diǎn)撥】本題考查了二次函數(shù)、一次函數(shù)、反比例函數(shù)的性質(zhì),掌握函數(shù)的增減性是解決問題的關(guān)鍵.2、D【解題分析】
A、對(duì)重慶市初中學(xué)生每天閱讀時(shí)間的調(diào)查,調(diào)查范圍廣適合抽樣調(diào)查,故A錯(cuò)誤;B、對(duì)端午節(jié)期間市場(chǎng)上粽子質(zhì)量情況的調(diào)查,調(diào)查具有破壞性,適合抽樣調(diào)查,故B錯(cuò)誤;C、對(duì)某批次手機(jī)的防水功能的調(diào)查,調(diào)查具有破壞性,適合抽樣調(diào)查,故C錯(cuò)誤;D、對(duì)某校九年級(jí)3班學(xué)生肺活量情況的調(diào)查,人數(shù)較少,適合普查,故D正確;故選D.3、C【解題分析】
解:由題意可知4的算術(shù)平方根是2,4的立方根是<2,8的算術(shù)平方根是,2<<3,8的立方根是2,
故根據(jù)數(shù)軸可知,
故選C4、D【解題分析】
解:∵直線l1與x軸的交點(diǎn)為A(﹣1,0),∴﹣1k+b=0,∴,解得:.∵直線l1:y=﹣1x+4與直線l1:y=kx+b(k≠0)的交點(diǎn)在第一象限,∴,解得0<k<1.故選D.【題目點(diǎn)撥】?jī)蓷l直線相交或平行問題;一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征.5、D【解題分析】
根據(jù)圖形可知,a是一個(gè)負(fù)數(shù),并且它的絕對(duì)是大于1小于2,b是一個(gè)正數(shù),并且它的絕對(duì)值是大于0小于1,即可得出|b|<|a|.【題目詳解】A選項(xiàng):由圖中信息可知,實(shí)數(shù)a為負(fù)數(shù),實(shí)數(shù)b為正數(shù),但表示它們的點(diǎn)到原點(diǎn)的距離不相等,所以它們不互為相反數(shù),和不為0,故A錯(cuò)誤;B選項(xiàng):由圖中信息可知,實(shí)數(shù)a為負(fù)數(shù),實(shí)數(shù)b為正數(shù),而正數(shù)都大于負(fù)數(shù),故B錯(cuò)誤;C選項(xiàng):由圖中信息可知,實(shí)數(shù)a為負(fù)數(shù),實(shí)數(shù)b為正數(shù),而異號(hào)兩數(shù)相乘積為負(fù),負(fù)數(shù)都小于0,故C錯(cuò)誤;D選項(xiàng):由圖中信息可知,表示實(shí)數(shù)a的點(diǎn)到原點(diǎn)的距離大于表示實(shí)數(shù)b的點(diǎn)到原點(diǎn)的距離,而在數(shù)軸上表示一個(gè)數(shù)的點(diǎn)到原點(diǎn)的距離越遠(yuǎn)其絕對(duì)值越大,故D正確.∴選D.6、B【解題分析】
根據(jù)旋轉(zhuǎn)的性質(zhì)得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質(zhì)得出∠CFD=∠B+∠BEF,代入求出即可.【題目詳解】解:∵將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【題目點(diǎn)撥】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,三角形外角性質(zhì)的應(yīng)用,掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.7、C【解題分析】
根據(jù)題意畫出圖形,利用數(shù)形結(jié)合,即可得出答案.【題目詳解】根據(jù)題意,畫出圖形,如圖:當(dāng)時(shí),兩條直線無交點(diǎn);當(dāng)時(shí),兩條直線的交點(diǎn)在第一象限.故選:C.【題目點(diǎn)撥】本題主要考查兩個(gè)一次函數(shù)的交點(diǎn)問題,能夠數(shù)形結(jié)合是解題的關(guān)鍵.8、A【解題分析】
必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件,依據(jù)定義即可求解.【題目詳解】解:B、C、D選項(xiàng)為不確定事件,即隨機(jī)事件.故錯(cuò)誤;
一定發(fā)生的事件只有第一個(gè)答案,早晨的太陽一定從東方升起.故選A.【題目點(diǎn)撥】該題考查的是對(duì)必然事件的概念的理解;必然事件就是一定發(fā)生的事件.9、D【解題分析】試題分析:根據(jù)一元二次方程的概念,可知m-2≠0,解得m≠2.故選D10、D【解題分析】
先求出二次函數(shù)的對(duì)稱軸,再根據(jù)二次函數(shù)的增減性得出拋物線開口向上a>0,然后由-2≤x≤1時(shí),y的最大值為9,可得x=1時(shí),y=9,即可求出a.【題目詳解】∵二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),∴對(duì)稱軸是直線x=-2a2a∵當(dāng)x≥2時(shí),y隨x的增大而增大,∴a>0,∵-2≤x≤1時(shí),y的最大值為9,∴x=1時(shí),y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合題意舍去).故選D.【題目點(diǎn)撥】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(-b2a,4ac-b24a),對(duì)稱軸直線x=-b2a,二次函數(shù)y=ax2+bx+c(a≠0)的圖象具有如下性質(zhì):①當(dāng)a>0時(shí),拋物線y=ax2+bx+c(a≠0)的開口向上,x<-b2a時(shí),y隨x的增大而減??;x>-b2a時(shí),y隨x的增大而增大;x=-b2a時(shí),y取得最小值4ac-b24a11、B【解題分析】【分析】根據(jù)平行線的判定方法結(jié)合已知條件逐項(xiàng)進(jìn)行分析即可得.【題目詳解】A、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四邊形AECF是平行四邊形,故不符合題意;B、如圖所示,AE=CF,不能得到四邊形AECF是平行四邊形,故符合題意;C、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四邊形AECF是平行四邊形,故不符合題意;D、如圖,∵四邊形ABCD是平行四邊形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四邊形AECF是平行四邊形,故不符合題意,故選B.【題目點(diǎn)撥】本題考查了平行四邊形的性質(zhì)與判定,熟練掌握平行四邊形的判定定理與性質(zhì)定理是解題的關(guān)鍵.12、C【解題分析】
根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.【題目詳解】解:①由圖象可知:a>0,c<0,∴ac<0,故①錯(cuò)誤;②由于對(duì)稱軸可知:<1,∴2a+b>0,故②正確;③由于拋物線與x軸有兩個(gè)交點(diǎn),∴△=b2﹣4ac>0,故③正確;④由圖象可知:x=1時(shí),y=a+b+c<0,故④正確;⑤當(dāng)x>時(shí),y隨著x的增大而增大,故⑤錯(cuò)誤;故選:C.【題目點(diǎn)撥】本題考查二次函數(shù),解題的關(guān)鍵是熟練運(yùn)用二次函數(shù)的圖象與性質(zhì),本題屬于基礎(chǔ)題型.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、A【解題分析】
該班男生有x人,女生有y人.根據(jù)題意得:,故選D.考點(diǎn):由實(shí)際問題抽象出二元一次方程組.14、【解題分析】
認(rèn)真審題,根據(jù)垂線段最短得出PM⊥AB時(shí)線段PM最短,分別求出PB、OB、OA、AB的長(zhǎng)度,利用△PBM∽△ABO,即可求出本題的答案【題目詳解】解:如圖,過點(diǎn)P作PM⊥AB,則:∠PMB=90°,當(dāng)PM⊥AB時(shí),PM最短,因?yàn)橹本€y=x﹣3與x軸、y軸分別交于點(diǎn)A,B,可得點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B的坐標(biāo)為(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴,即:,所以可得:PM=.15、-1【解題分析】試題分析:∵正方形ADEF的面積為4,∴正方形ADEF的邊長(zhǎng)為2,∴BF=2AF=4,AB=AF+BF=2+4=1.設(shè)B點(diǎn)坐標(biāo)為(t,1),則E點(diǎn)坐標(biāo)(t-2,2),∵點(diǎn)B、E在反比例函數(shù)y=的圖象上,∴k=1t=2(t-2),解得t=-1,k=-1.考點(diǎn):反比例函數(shù)系數(shù)k的幾何意義.16、4【解題分析】
已知弧長(zhǎng)即已知圍成的圓錐的底面半徑的長(zhǎng)是6πcm,這樣就求出底面圓的半徑.扇形的半徑為5cm就是圓錐的母線長(zhǎng)是5cm.就可以根據(jù)勾股定理求出圓錐的高.【題目詳解】設(shè)底面圓的半徑是r,則2πr=6π,∴r=3cm,∴圓錐的高==4cm.故答案為4.17、【解題分析】試題分析:當(dāng)n=3時(shí),A=≈0.3178,B=1,A<B;當(dāng)n=4時(shí),A=≈0.2679,B=≈0.4142,A<B;當(dāng)n=5時(shí),A=≈0.2631,B=≈0.3178,A<B;當(dāng)n=6時(shí),A=≈0.2134,B=≈0.2679,A<B;……以此類推,隨著n的增大,a在不斷變小,而b的變化比a慢兩個(gè)數(shù),所以可知當(dāng)n≥3時(shí),A、B的關(guān)系始終是A<B.18、13【解題分析】
根據(jù)同時(shí)同地物高與影長(zhǎng)成比列式計(jì)算即可得解.【題目詳解】解:設(shè)旗桿高度為x米,由題意得,,解得x=13.故答案為13.【題目點(diǎn)撥】本題考查投影,解題的關(guān)鍵是應(yīng)用相似三角形.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)(2)1(3)①②③【解題分析】
(1)由拋物線與x軸只有一個(gè)交點(diǎn),可知△=0;(2)由拋物線與x軸有兩個(gè)交點(diǎn)且AB=2,可知A、B坐標(biāo),代入解析式,可得k值;(3)通過解析式求出對(duì)稱軸,與y軸交點(diǎn),并根據(jù)系數(shù)的關(guān)系得出判斷.【題目詳解】(1)∵二次函數(shù)y=kx2﹣4kx+3與x軸只有一個(gè)公共點(diǎn),∴關(guān)于x的方程kx2﹣4kx+3=0有兩個(gè)相等的實(shí)數(shù)根,∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,解得:k1=0,k2=,k≠0,∴k=;(2)∵AB=2,拋物線對(duì)稱軸為x=2,∴A、B點(diǎn)坐標(biāo)為(1,0),(3,0),將(1,0)代入解析式,可得k=1,(3)①∵當(dāng)x=0時(shí),y=3,∴二次函數(shù)圖象與y軸的交點(diǎn)為(0,3),①正確;②∵拋物線的對(duì)稱軸為x=2,∴拋物線的對(duì)稱軸不變,②正確;③二次函數(shù)y=kx2﹣4kx+3=k(x2﹣4x)+3,將其看成y關(guān)于k的一次函數(shù),令k的系數(shù)為0,即x2﹣4x=0,解得:x1=0,x2=4,∴拋物線一定經(jīng)過兩個(gè)定點(diǎn)(0,3)和(4,3),③正確.綜上可知:正確的結(jié)論有①②③.【題目點(diǎn)撥】本題考查了二次函數(shù)的性質(zhì),與x、y軸的交點(diǎn)問題,對(duì)稱軸問題,以及系數(shù)與圖象的關(guān)系問題,是一道很好的綜合問題.20、(1)證明見解析(2)1【解題分析】
(1)連接OC,可以證得△OAP≌△OCP,利用全等三角形的對(duì)應(yīng)角相等,以及切線的性質(zhì)定理可以得到:∠OCP=90°,即OC⊥PC,即可證得;(2)先證△OBC是等邊三角形得∠COB=60°,再由(1)中所證切線可得∠OCF=90°,結(jié)合半徑OC=1可得答案.【題目詳解】(1)連接OC.∵OD⊥AC,OD經(jīng)過圓心O,∴AD=CD,∴PA=PC.在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.∵PA是半⊙O的切線,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切線.(2)∵OB=OC,∠OBC=60°,∴△OBC是等邊三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC?tan∠COB=1.【題目點(diǎn)撥】本題考查了切線的性質(zhì)定理以及判定定理,以及直角三角形三角函數(shù)的應(yīng)用,證明圓的切線的問題常用的思路是根據(jù)切線的判定定理轉(zhuǎn)化成證明垂直的問題.21、(1)見解析;(2)16【解題分析】試題分析:(1)要證△ABF∽△CEB,需找出兩組對(duì)應(yīng)角相等;已知了平行四邊形的對(duì)角相等,再利用AB∥CD,可得一對(duì)內(nèi)錯(cuò)角相等,則可證.(2)由于△DEF∽△EBC,可根據(jù)兩三角形的相似比,求出△EBC的面積,也就求出了四邊形BCDF的面積.同理可根據(jù)△DEF∽△AFB,求出△AFB的面積.由此可求出?ABCD的面積.試題解析:(1)證明:∵四邊形ABCD是平行四邊形∴∠A=∠C,AB∥CD∴∠ABF=∠CEB∴△ABF∽△CEB(2)解:∵四邊形ABCD是平行四邊形∴AD∥BC,AB平行且等于CD∴△DEF∽△CEB,△DEF∽△ABF∵DE=CD∴,∵S△DEF=2S△CEB=18,S△ABF=8,∴S四邊形BCDF=S△BCE-S△DEF=16∴S四邊形ABCD=S四邊形BCDF+S△ABF=16+8=1.考點(diǎn):1.相似三角形的判定與性質(zhì);2.三角形的面積;3.平行四邊形的性質(zhì).22、(1)作圖見解析;(2)作圖見解析;5π(平方單位).【解題分析】
(1)連接AO、BO、CO并延長(zhǎng)到2AO、2BO、2CO長(zhǎng)度找到各點(diǎn)的對(duì)應(yīng)點(diǎn),順次連接即可.(2)△A′B′C′的A′、C′繞點(diǎn)B′順時(shí)針旋轉(zhuǎn)90°得到對(duì)應(yīng)點(diǎn),順次連接即可.A′B′在旋轉(zhuǎn)過程中掃過的圖形面積是一個(gè)扇形,根據(jù)扇形的面積公式計(jì)算即可.【題目詳解】解:(1)見圖中△A′B′C′
(2)見圖中△A″B′C″
扇形的面積(平方單位).【題目點(diǎn)撥】本題主要考查了位似圖形及旋轉(zhuǎn)變換作圖的方法及扇形的面積公式.23、(1)見解析:(2)見解析.【解題分析】試題分析:(1)根據(jù)角平分線的作法作出∠BAE的平分線AP即可;(2)先證明△ABO≌△CBO,得到AO=CO,AB=CB,再證明△ABO≌△ADO,得到BO=DO.由對(duì)角線互相平分的四邊形是平行四邊形及有一組鄰邊相等的平行四邊形是菱形即可證明四邊形ABCD是菱形.試題解析:(1)如圖所示:(2)如圖:在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四邊形ABCD是平行四邊形,∵AB=CB,∴平行四邊形ABCD是菱形.考點(diǎn):1.菱形的判定;2.作圖—基本作圖.24、(1)y=﹣x2+x﹣2;(2)當(dāng)t=2時(shí),△DAC面積最大為4;(3)符合條件的點(diǎn)P為(2,1)或(5,﹣2)或(﹣3,﹣14).【解題分析】
(1)把A與B坐標(biāo)代入解析式求出a與b的值,即可確定出解析式;(2)如圖所示,過D作DE與y軸平行,三角形ACD面積等于DE與OA乘積的一半,表示出S與t的二次函數(shù)解析式,利用二次函數(shù)性質(zhì)求出S的最大值即可;(3)存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似,分當(dāng)1<m<4時(shí);當(dāng)m<1時(shí);當(dāng)m>4時(shí)三種情況求出點(diǎn)P坐標(biāo)即可.【題目詳解】(1)∵該拋物線過點(diǎn)A(4,0),B(1,0),∴將A與B代入解析式得:,解得:,則此拋物線的解析式為y=﹣x2+x﹣2;(2)如圖,設(shè)D點(diǎn)的橫坐標(biāo)為t(0<t<4),則D點(diǎn)的縱坐標(biāo)為﹣t2+t﹣2,過D作y軸的平行線交AC于E,由題意可求得直線AC的解析式為y=x﹣2,∴E點(diǎn)的坐標(biāo)為(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,則當(dāng)t=2時(shí),△DAC面積最大為4;(3)存在,如圖,設(shè)P點(diǎn)的橫坐標(biāo)為m,則P點(diǎn)的縱坐標(biāo)為﹣m2+m﹣2,當(dāng)1<m<4時(shí),AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①當(dāng)==2時(shí),△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此時(shí)P(2,1);②當(dāng)==時(shí),△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合題意,舍去)∴當(dāng)1<m<4時(shí),P(2,1);類似地可求出當(dāng)m>4時(shí),P(5,﹣2);當(dāng)m<1時(shí),P(﹣3,﹣14),綜上所述,符合條件的點(diǎn)P為(2,1)或(5,﹣2)或(﹣3,﹣14).【題目點(diǎn)撥】本題綜合考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標(biāo)系里求三角形的面積及其最大值問題,要求會(huì)用字母代替長(zhǎng)度,坐標(biāo),會(huì)對(duì)代數(shù)式進(jìn)行合理變形,解決相似三角形問題時(shí)要注意分類討論.25、(1)△ABC為直角三角形,證明見解析;(2)12π;(3).【解題分析】
(1)由,得△CEF∽△CBE,∴∠CBE=∠CEF,由BD為直徑,得∠ADE+∠ABE=90°,即可得∠DBC=90°故△ABC為直角三角形.(2)設(shè)∠EBC=∠ECB=x,根據(jù)等腰三角形的性質(zhì)與直角三角形的性質(zhì)易得x=30°,則∠ABE=60°故AB=BE=,則可求出求⊙A的面積;(3)由(1)知∠D=∠CFE=∠CBE,故tan∠CBE=,設(shè)EF=a,BE=2a,利用勾股定理求出BD=2BF=,得AD=AB=,DE=2BE=4a,過F作FK∥BD交CE于K,利用平行線分線段成比例得,求得,即可求出tan∠C=再求出cos∠C即可.【題目詳解】解:∵,∴,∴△CEF∽△CBE,∴∠CBE=∠CEF,∵AE=AD,∴∠ADE=∠AED=∠FEC=∠CBE,∵BD為直徑,∴∠ADE+∠ABE=90°,∴∠CBE+∠ABE=90°,∴∠DBC=90°△ABC為直角三角形.(2)∵BE=CE∴設(shè)∠EBC=∠ECB=x,∴∠BDE=∠EBC=x,∵AE=AD∴∠AED=∠ADE=x,∴∠CEF=∠AED=x∴∠BFE=2x在△BDF中由△內(nèi)角和可知:3x=90°∴x=30°∴∠ABE=60°∴AB=BE=∴(3)由(1)知:∠D=∠CFE=∠CBE,∴tan∠CBE=,設(shè)EF=a,BE=2a,∴BF=,BD=2BF=,∴AD=AB=,∴,DE=2BE=4a,過F作FK∥BD交CE于K,∴,∵,∴∴,∴tan∠C=∴cos∠C=.【題目點(diǎn)撥】此題主要考查圓內(nèi)的三角形綜合問題,解題的關(guān)鍵是熟知圓的切線定理,等腰三角形的性質(zhì),及相似三角形的性質(zhì).26、(1)2,2;2,2;(2)+=5;(1)AF=2.【解題分析】試題分析:(1)∵AF⊥BE,∠ABE=25°,∴AP=BP=AB=2,∵AF,BE是△ABC的中線,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在R
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《2.2分子結(jié)構(gòu)與物質(zhì)的性質(zhì)》說課稿
- 催收協(xié)議合同范本
- 《財(cái)務(wù)管理(第7版)》教案全套 王化成
- 買廢鐵合同范本
- 消防設(shè)施操作員中級(jí)考試題+參考答案
- 單位購(gòu)買冰箱合同范例
- 辦理勞務(wù)資質(zhì)合同范本
- 公司抵債房合同范本
- 小型工程安裝合同范本
- 流體力學(xué)考試模擬題(含參考答案)
- 公安人口管理概述
- MSDS物質(zhì)安全技術(shù)資料-洗面水
- 合作單位綜合評(píng)價(jià)表(綜合服務(wù)類)
- 人教版六年級(jí)上冊(cè)數(shù)學(xué)第六單元測(cè)試卷(百分?jǐn)?shù)(一))
- 河南省地圖含市縣地圖矢量分層地圖行政區(qū)劃市縣概況ppt模板
- 動(dòng)畫基礎(chǔ)知識(shí)ppt(完整版)課件
- 中國(guó)音樂史PPT講稿課件
- 橋梁模板施工方案最終版
- 部編版小學(xué)六年級(jí)書法教案【16課時(shí)】電子稿
- 廣元九州施工合同正式
- 蘭州商學(xué)院二級(jí)學(xué)院權(quán)力運(yùn)行流程圖
評(píng)論
0/150
提交評(píng)論