版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河北省滄州市任丘市市級名校2024年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列長度的三條線段能組成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,42.如圖,點A、B、C在圓O上,若∠OBC=40°,則∠A的度數(shù)為()A.40° B.45° C.50° D.55°3.如圖,在平面直角坐標(biāo)系xOy中,點A(1,0),B(2,0),正六邊形ABCDEF沿x軸正方向無滑動滾動,每旋轉(zhuǎn)60°為滾動1次,那么當(dāng)正六邊形ABCDEF滾動2017次時,點F的坐標(biāo)是()A.(2017,0) B.(2017,)C.(2018,) D.(2018,0)4.如圖,在直角坐標(biāo)系xOy中,若拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點D位于直線y=﹣2與x軸之間的區(qū)域(不包括直線y=﹣2和x軸),則l與直線y=﹣1交點的個數(shù)是()A.0個 B.1個或2個C.0個、1個或2個 D.只有1個5.﹣18的倒數(shù)是()A.18 B.﹣18 C.- D.6.拋物線經(jīng)過第一、三、四象限,則拋物線的頂點必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.下列計算正確的是()A.﹣a4b÷a2b=﹣a2bB.(a﹣b)2=a2﹣b2C.a(chǎn)2?a3=a6D.﹣3a2+2a2=﹣a28.在同一平面直角坐標(biāo)系中,函數(shù)y=x+k與(k為常數(shù),k≠0)的圖象大致是()A. B.C. D.9.在下列四個新能源汽車車標(biāo)的設(shè)計圖中,屬于中心對稱圖形的是()A. B. C. D.10.若反比例函數(shù)的圖像經(jīng)過點,則一次函數(shù)與在同一平面直角坐標(biāo)系中的大致圖像是()A. B. C. D.11.“趕陀螺”是一項深受人們喜愛的運動.如圖所示是一個陀螺的立體結(jié)構(gòu)圖.已知底面圓的直徑AB=8cm,圓柱的高BC=6cm,圓錐的高CD=3cm,則這個陀螺的表面積是()A.68πcm2 B.74πcm2 C.84πcm2 D.100πcm212.在平面直角坐標(biāo)系中,將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標(biāo)是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AB是半圓O的直徑,點C、D是半圓O的三等分點,若弦CD=2,則圖中陰影部分的面積為.14.一個不透明的口袋中有2個紅球,1個黃球,1個白球,每個球除顏色不同外其余均相同.小溪同學(xué)從口袋中隨機取出兩個小球,則小溪同學(xué)取出的是一個紅球、一個白球的概率為_____.15.某排水管的截面如圖,已知截面圓半徑OB=10cm,水面寬AB是16cm,則截面水深CD為_____.16.請你算一算:如果每人每天節(jié)約1粒大米,全國13億人口一天就能節(jié)約_____千克大米?。ńY(jié)果用科學(xué)記數(shù)法表示,已知1克大米約52粒)17.如圖,點O是矩形紙片ABCD的對稱中心,E是BC上一點,將紙片沿AE折疊后,點B恰好與點O重合.若BE=3,則折痕AE的長為____.18.如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當(dāng)扇形AOB的半徑為2時,陰影部分的面積為__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某班為確定參加學(xué)校投籃比賽的任選,在A、B兩位投籃高手間進(jìn)行了6次投籃比賽,每人每次投10個球,將他們每次投中的個數(shù)繪制成如圖所示的折線統(tǒng)計圖.(1)根據(jù)圖中所給信息填寫下表:投中個數(shù)統(tǒng)計平均數(shù)中位數(shù)眾數(shù)A8B77(2)如果這個班只能在A、B之間選派一名學(xué)生參賽,從投籃穩(wěn)定性考慮應(yīng)該選派誰?請你利用學(xué)過的統(tǒng)計量對問題進(jìn)行分析說明.20.(6分)已知:如圖,E是BC上一點,AB=EC,AB∥CD,BC=CD.求證:AC=ED.21.(6分)“足球運球”是中考體育必考項目之一.蘭州市某學(xué)校為了解今年九年級學(xué)生足球運球的掌握情況,隨機抽取部分九年級學(xué)生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進(jìn)行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)根據(jù)所給信息,解答以下問題:(1)在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角是度;(2)補全條形統(tǒng)計圖;(3)所抽取學(xué)生的足球運球測試成績的中位數(shù)會落在等級;(4)該校九年級有300名學(xué)生,請估計足球運球測試成績達(dá)到A級的學(xué)生有多少人?22.(8分)如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,F(xiàn)C交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.23.(8分)從化市某中學(xué)初三(1)班數(shù)學(xué)興趣小組為了解全校800名初三學(xué)生的“初中畢業(yè)選擇升學(xué)和就業(yè)”情況,特對本班50名同學(xué)們進(jìn)行調(diào)查,根據(jù)全班同學(xué)提出的3個主要觀點:A高中,B中技,C就業(yè),進(jìn)行了調(diào)查(要求每位同學(xué)只選自己最認(rèn)可的一項觀點);并制成了扇形統(tǒng)計圖(如圖).請回答以下問題:(1)該班學(xué)生選擇觀點的人數(shù)最多,共有人,在扇形統(tǒng)計圖中,該觀點所在扇形區(qū)域的圓心角是度.(2)利用樣本估計該校初三學(xué)生選擇“中技”觀點的人數(shù).(3)已知該班只有2位女同學(xué)選擇“就業(yè)”觀點,如果班主任從該觀點中,隨機選取2位同學(xué)進(jìn)行調(diào)查,那么恰好選到這2位女同學(xué)的概率是多少?(用樹形圖或列表法分析解答).24.(10分)已知拋物線y=ax2﹣bx.若此拋物線與直線y=x只有一個公共點,且向右平移1個單位長度后,剛好過點(3,1).①求此拋物線的解析式;②以y軸上的點P(1,n)為中心,作該拋物線關(guān)于點P對稱的拋物線y',若這兩條拋物線有公共點,求n的取值范圍;若a>1,將此拋物線向上平移c個單位(c>1),當(dāng)x=c時,y=1;當(dāng)1<x<c時,y>1.試比較ac與1的大小,并說明理由.25.(10分)如圖,矩形中,對角線,相交于點,且,.動點,分別從點,同時出發(fā),運動速度均為lcm/s.點沿運動,到點停止.點沿運動,點到點停留4后繼續(xù)運動,到點停止.連接,,,設(shè)的面積為(這里規(guī)定:線段是面積為0的三角形),點的運動時間為.(1)求線段的長(用含的代數(shù)式表示);(2)求時,求與之間的函數(shù)解析式,并寫出的取值范圍;(3)當(dāng)時,直接寫出的取值范圍.26.(12分)某商場同時購進(jìn)甲、乙兩種商品共200件,其進(jìn)價和售價如表,商品名稱甲乙進(jìn)價(元/件)80100售價(元/件)160240設(shè)其中甲種商品購進(jìn)x件,該商場售完這200件商品的總利潤為y元.(1)求y與x的函數(shù)關(guān)系式;(2)該商品計劃最多投入18000元用于購買這兩種商品,則至少要購進(jìn)多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎(chǔ)上,實際進(jìn)貨時,生產(chǎn)廠家對甲種商品的出廠價下調(diào)a元(50<a<70)出售,且限定商場最多購進(jìn)120件,若商場保持同種商品的售價不變,請你根據(jù)以上信息及(2)中的條件,設(shè)計出使該商場獲得最大利潤的進(jìn)貨方案.27.(12分)先化簡,再求值:,其中滿足.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】試題解析:A.∵3+2=5,∴2,3,5不能組成三角形,故A錯誤;B.∵4+2<7,∴7,4,2不能組成三角形,故B錯誤;C.∵4+3<8,∴3,4,8不能組成三角形,故C錯誤;D.∵3+3>4,∴3,3,4能組成三角形,故D正確;故選D.2、C【解題分析】
根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理求得∠BOC=100°,再利用圓周角定理得到∠A=12【題目詳解】∵OB=OC,
∴∠OBC=∠OCB.
又∠OBC=40°,
∴∠OBC=∠OCB=40°,
∴∠BOC=180°-2×40°=100°,
∴∠A=12【題目點撥】考查了圓周角定理.在同圓或等圓中,一條弧所對的圓周角是它所對的圓心角的一半.3、C【解題分析】
本題是規(guī)律型:點的坐標(biāo);坐標(biāo)與圖形變化-旋轉(zhuǎn),正六邊形ABCDEF一共有6條邊,即6次一循環(huán);因為2017÷6=336余1,點F滾動1次時的橫坐標(biāo)為2,縱坐標(biāo)為,點F滾動7次時的橫坐標(biāo)為8,縱坐標(biāo)為,所以點F滾動2107次時的縱坐標(biāo)與相同,橫坐標(biāo)的次數(shù)加1,由此即可解決問題.【題目詳解】.解:∵正六邊形ABCDEF一共有6條邊,即6次一循環(huán);∴2017÷6=336余1,∴點F滾動1次時的橫坐標(biāo)為2,縱坐標(biāo)為,點F滾動7次時的橫坐標(biāo)為8,縱坐標(biāo)為,∴點F滾動2107次時的縱坐標(biāo)與相同,橫坐標(biāo)的次數(shù)加1,∴點F滾動2107次時的橫坐標(biāo)為2017+1=2018,縱坐標(biāo)為,∴點F滾動2107次時的坐標(biāo)為(2018,),故選C.【題目點撥】本題考查坐標(biāo)與圖形的變化,規(guī)律型:點的坐標(biāo),解題關(guān)鍵是學(xué)會從特殊到一般的探究方法,是中考常考題型.4、C【解題分析】
根據(jù)題意,利用分類討論的數(shù)學(xué)思想可以得到l與直線y=﹣1交點的個數(shù),從而可以解答本題.【題目詳解】∵拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點D位于直線y=﹣2與x軸之間的區(qū)域,開口向下,∴當(dāng)頂點D位于直線y=﹣1下方時,則l與直線y=﹣1交點個數(shù)為0,當(dāng)頂點D位于直線y=﹣1上時,則l與直線y=﹣1交點個數(shù)為1,當(dāng)頂點D位于直線y=﹣1上方時,則l與直線y=﹣1交點個數(shù)為2,故選C.【題目點撥】考查拋物線與x軸的交點、二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用函數(shù)的思想和分類討論的數(shù)學(xué)思想解答.5、C【解題分析】
根據(jù)乘積為1的兩個數(shù)互為倒數(shù),可得一個數(shù)的倒數(shù).【題目詳解】∵-18=1,∴﹣18的倒數(shù)是,故選C.【題目點撥】本題考查了倒數(shù),分子分母交換位置是求一個數(shù)的倒數(shù)的關(guān)鍵.6、A【解題分析】
根據(jù)二次函數(shù)圖象所在的象限大致畫出圖形,由此即可得出結(jié)論.【題目詳解】∵二次函數(shù)圖象只經(jīng)過第一、三、四象限,∴拋物線的頂點在第一象限.故選A.【題目點撥】本題考查了二次函數(shù)的性質(zhì)以及二次函數(shù)的圖象,大致畫出函數(shù)圖象,利用數(shù)形結(jié)合解決問題是解題的關(guān)鍵.7、D【解題分析】
根據(jù)各個選項中的式子可以計算出正確的結(jié)果,從而可以解答本題.【題目詳解】-aa-b2a2-3a故選:D.【題目點撥】考查整式的除法,完全平方公式,同底數(shù)冪相乘以及合并同類項,比較基礎(chǔ),難度不大.8、B【解題分析】
選項A中,由一次函數(shù)y=x+k的圖象知k<0,由反比例函數(shù)y=的圖象知k>0,矛盾,所以選項A錯誤;選項B中,由一次函數(shù)y=x+k的圖象知k>0,由反比例函數(shù)y=的圖象知k>0,正確,所以選項B正確;由一次函數(shù)y=x+k的圖象知,函數(shù)圖象從左到右上升,所以選項C、D錯誤.故選B.9、D【解題分析】
根據(jù)中心對稱圖形的概念求解.【題目詳解】解:A.不是中心對稱圖形,本選項錯誤;B.不是中心對稱圖形,本選項錯誤;C.不是中心對稱圖形,本選項錯誤;D.是中心對稱圖形,本選項正確.故選D.【題目點撥】本題主要考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.10、D【解題分析】
甶待定系數(shù)法可求出函數(shù)的解析式為:,由上步所得可知比例系數(shù)為負(fù),聯(lián)系反比例函數(shù),一次函數(shù)的性質(zhì)即可確定函數(shù)圖象.【題目詳解】解:由于函數(shù)的圖像經(jīng)過點,則有∴圖象過第二、四象限,
∵k=-1,
∴一次函數(shù)y=x-1,
∴圖象經(jīng)過第一、三、四象限,
故選:D.【題目點撥】本題考查反比例函數(shù)的圖象與性質(zhì),一次函數(shù)的圖象,解題的關(guān)鍵是求出函數(shù)的解析式,根據(jù)解析式進(jìn)行判斷;11、C【解題分析】試題分析:∵底面圓的直徑為8cm,高為3cm,∴母線長為5cm,∴其表面積=π×4×5+42π+8π×6=84πcm2,故選C.考點:圓錐的計算;幾何體的表面積.12、B【解題分析】試題分析:由平移規(guī)律可得將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標(biāo)是(1,5),故選B.考點:點的平移.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解題分析】試題分析:連結(jié)OC、OD,因為C、D是半圓O的三等分點,所以,∠BOD=∠COD=60°,所以,三角形OCD為等邊三角形,所以,半圓O的半徑為OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以陰影部分的面積為為S=--()=.考點:扇形的面積計算.14、【解題分析】
先畫樹狀圖求出所有等可能的結(jié)果數(shù),再找出從口袋中隨機摸出2個球,摸到的兩個球是一紅一白的結(jié)果數(shù),然后根據(jù)概率公式求解.【題目詳解】解:根據(jù)題意畫樹狀圖如下:共有12種等可能的結(jié)果數(shù),其中從口袋中隨機摸出2個球,摸到的一個紅球、一個白球的結(jié)果數(shù)為4,所以從口袋中隨機摸出2個球,則摸到的兩個球是一白一黃的概率為.故答案為.【題目點撥】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.15、4cm.【解題分析】
由題意知OD⊥AB,交AB于點C,由垂徑定理可得出BC的長,在Rt△OBC中,根據(jù)勾股定理求出OC的長,由CD=OD-OC即可得出結(jié)論.【題目詳解】由題意知OD⊥AB,交AB于點E,∵AB=16cm,∴BC=AB=×16=8cm,在Rt△OBE中,∵OB=10cm,BC=8cm,∴OC=(cm),∴CD=OD-OC=10-6=4(cm)故答案為4cm.【題目點撥】本題考查的是垂徑定理的應(yīng)用,根據(jù)題意在直角三角形運用勾股定理列出方程是解答此題的關(guān)鍵.16、2.5×1【解題分析】
先根據(jù)有理數(shù)的除法求出節(jié)約大米的千克數(shù),再用科學(xué)計數(shù)法表示,對于一個絕對值較大的數(shù),用科學(xué)記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).【題目詳解】1300000000÷52÷1000(千克)=25000(千克)=2.5×1(千克).故答案為2.5×1.【題目點撥】本題考查了有理數(shù)的除法和正整數(shù)指數(shù)科學(xué)計數(shù)法,根據(jù)科學(xué)計算法的要求,正確確定出a和n的值是解答本題的關(guān)鍵.17、6【解題分析】試題分析:由題意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,設(shè)AB=AO=OC=x,則有AC=2x,∠ACB=30°,在Rt△ABC中,根據(jù)勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,則AE=6故答案為6.18、π﹣1【解題分析】
根據(jù)勾股定理可求OC的長,根據(jù)題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.【題目詳解】連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,∴∠COD=45°,∴OC=CD=1,∴CD=OD=1,∴陰影部分的面積=扇形BOC的面積﹣三角形ODC的面積=﹣×11=π﹣1.故答案為π﹣1.【題目點撥】本題考查正方形的性質(zhì)和扇形面積的計算,解題關(guān)鍵是得到扇形半徑的長度.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)7,9,7;(2)應(yīng)該選派B;【解題分析】
(1)分別利用平均數(shù)、中位數(shù)、眾數(shù)分析得出答案;(2)利用方差的意義分析得出答案.【題目詳解】(1)A成績的平均數(shù)為(9+10+4+3+9+7)=7;眾數(shù)為9;B成績排序后為6,7,7,7,7,8,故中位數(shù)為7;故答案為:7,9,7;(2)=[(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;=[(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]=;從方差看,B的方差小,所以B的成績更穩(wěn)定,從投籃穩(wěn)定性考慮應(yīng)該選派B.【題目點撥】此題主要考查了中位數(shù)、眾數(shù)、方差的定義,方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.20、見解析【解題分析】試題分析:已知AB∥CD,根據(jù)兩直線平行,內(nèi)錯角相等可得∠B=∠ECD,再根據(jù)SAS證明△ABC≌△ECD全,由全等三角形對應(yīng)邊相等即可得AC=ED.試題解析:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS),∴AC=ED.考點:平行線的性質(zhì);全等三角形的判定及性質(zhì).21、(1)117(2)見解析(3)B(4)30【解題分析】
(1)先根據(jù)B等級人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他等級人數(shù)求得C等級人數(shù),繼而用360°乘以C等級人數(shù)所占比例即可得;(2)根據(jù)以上所求結(jié)果即可補全圖形;(3)根據(jù)中位數(shù)的定義求解可得;(4)總?cè)藬?shù)乘以樣本中A等級人數(shù)所占比例可得.【題目詳解】解:(1)∵總?cè)藬?shù)為18÷45%=40人,∴C等級人數(shù)為40﹣(4+18+5)=13人,則C對應(yīng)的扇形的圓心角是360°×=117°,故答案為117;(2)補全條形圖如下:(3)因為共有40個數(shù)據(jù),其中位數(shù)是第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在B等級,所以所抽取學(xué)生的足球運球測試成績的中位數(shù)會落在B等級,故答案為B.(4)估計足球運球測試成績達(dá)到A級的學(xué)生有300×=30人.【題目點撥】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?2、(1)證明見解析;(2)1.【解題分析】試題分析:(1)根據(jù)矩形的性質(zhì)得到AB=CD,∠B=∠D=90°,根據(jù)折疊的性質(zhì)得到∠E=∠B,AB=AE,根據(jù)全等三角形的判定定理即可得到結(jié)論;(2)根據(jù)全等三角形的性質(zhì)得到AF=CF,EF=DF,根據(jù)勾股定理得到DF=3,根據(jù)三角形的面積公式即可得到結(jié)論.試題解析:(1)∵四邊形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵將矩形ABCD沿對角線AC翻折,點B落在點E處,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF與△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴圖中陰影部分的面積=S△ACE﹣S△AEF=×4×8﹣×4×3=1.點睛:本題考查了翻折變換﹣折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.23、(4)A高中觀點.4.446;(4)456人;(4)16【解題分析】試題分析:(4)全班人數(shù)乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”觀點的人數(shù),用460°乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”的觀點所在扇形區(qū)域的圓心角的度數(shù);(4)用全校初三年級學(xué)生數(shù)乘以選擇“B中技”觀點的百分比即可估計該校初三學(xué)生選擇“中技”觀點的人數(shù);(4)先計算出該班選擇“就業(yè)”觀點的人數(shù)為4人,則可判斷有4位女同學(xué)和4位男生選擇“就業(yè)”觀點,再列表展示44種等可能的結(jié)果數(shù),找出出現(xiàn)4女的結(jié)果數(shù),然后根據(jù)概率公式求解.試題解析:(4)該班學(xué)生選擇A高中觀點的人數(shù)最多,共有60%×50=4(人),在扇形統(tǒng)計圖中,該觀點所在扇形區(qū)域的圓心角是60%×460°=446°;(4)∵800×44%=456(人),∴估計該校初三學(xué)生選擇“中技”觀點的人數(shù)約是456人;(4)該班選擇“就業(yè)”觀點的人數(shù)=50×(4-60%-44%)=50×8%=4(人),則該班有4位女同學(xué)和4位男生選擇“就業(yè)”觀點,列表如下:共有44種等可能的結(jié)果數(shù),其中出現(xiàn)4女的情況共有4種.所以恰好選到4位女同學(xué)的概率=212考點:4.列表法與樹狀圖法;4.用樣本估計總體;4.扇形統(tǒng)計圖.24、(1)①;②n≤1;(2)ac≤1,見解析.【解題分析】
(1)①△=1求解b=1,將點(3,1)代入平移后解析式,即可;②頂點為(1,)關(guān)于P(1,n)對稱點的坐標(biāo)是(﹣1,2n﹣),關(guān)于點P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n,聯(lián)立方程組即可求n的范圍;(2)將點(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=ac+1,當(dāng)1<x<c時,y>1.≥c,b≥2ac,ac+1≥2ac,ac≥1;【題目詳解】解:(1)①ax2﹣bx=x,ax2﹣(b+1)x=1,△=(b+1)2=1,b=﹣1,平移后的拋物線y=a(x﹣1)2﹣b(x﹣1)過點(3,1),∴4a﹣2b=1,∴a=﹣,b=﹣1,原拋物線:y=﹣x2+x,②其頂點為(1,)關(guān)于P(1,n)對稱點的坐標(biāo)是(﹣1,2n﹣),∴關(guān)于點P中心對稱的新拋物線y'=(x+1)2+2n﹣=x2+x+2n.由得:x2+2n=1有解,所以n≤1.(2)由題知:a>1,將此拋物線y=ax2﹣bx向上平移c個單位(c>1),其解析式為:y=ax2﹣bx+c過點(c,1),∴ac2﹣bc+c=1(c>1),∴ac﹣b+1=1,b=ac+1,且當(dāng)x=1時,y=c,對稱軸:x=,拋物線開口向上,畫草圖如右所示.由題知,當(dāng)1<x<c時,y>1.∴≥c,b≥2ac,∴ac+1≥2ac,ac≤1;【題目點撥】本題考查二次函數(shù)的圖象及性質(zhì);掌握二次函數(shù)圖象平移時改變位置,而a的值不變是解題的關(guān)鍵.25、(1)當(dāng)0<x≤1時,PD=1-x,當(dāng)1<x≤14時,PD=x-1.(2)y=;(3)5≤x≤9【解題分析】
(1)分點P在線段CD或在線段AD上兩種情形分別求解即可.
(2)分三種情形:①當(dāng)5≤x≤1時,如圖1中,根據(jù)y=S△DPB,求解即可.②當(dāng)1<x≤9時,如圖2中,根據(jù)y=S△DPB,求解即可.③9<x≤14時,如圖3中,根據(jù)y=S△APQ+S△ABQ-S△PAB計算即可.
(3)根據(jù)(2)中結(jié)論即可判斷.【題目詳解】解:(1)當(dāng)0<x≤1時,PD=1-x,
當(dāng)1<x≤14時,PD=x-1.
(2)①當(dāng)5≤x≤1時,如圖1中,
∵四邊形ABCD是矩形,
∴OD=OB,
∴y=S△DPB=×?(1-x)?6=(1-x)=12-x.
②當(dāng)1<x≤9時,如圖2中,y=S△DPB=×(x-1)×1=2x-2.
③9<x≤14時,如圖3中,y=S△APQ+S△ABQ-S△PAB=?(14-x)?(x-4)+×1×(tx-4)-×1×(14-x)=-x2+x-11.
綜上所述,y=.
(3)由(2)可知:當(dāng)5≤x≤9時,y=S△B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甘肅xx城鎮(zhèn)老舊小區(qū)改造項目可行性研究報告
- 生理第三練習(xí)試卷附答案
- 常壓儲罐高級理論練習(xí)試題及答案
- 北京xx產(chǎn)業(yè)園基礎(chǔ)設(shè)施項目可行性研究報告
- 2024年甲乙雙方關(guān)于廣告投放的分成合同
- 2024年消防安全設(shè)施施工協(xié)議范本一
- 2024年海洋工程保險項目協(xié)議
- 2024年度股權(quán)投資合伙合同模板2篇帶眉腳
- 現(xiàn)代學(xué)徒制與課程設(shè)計
- CJJ122-2017 游泳池給水排水工程技術(shù)規(guī)程
- 高中數(shù)學(xué)放縮法
- 上海市閔行區(qū)2024-2025學(xué)年八年級(上)期末物理試卷(解析版)
- 人教版三年級上冊數(shù)學(xué)期末測試卷可打印
- 醫(yī)療高級職稱評審論文答辯
- 設(shè)計服務(wù)保障措施方案
- 八年級下冊道德與法治期末復(fù)習(xí)-測試卷含答案
- 公路復(fù)測報告
- 人工智能教學(xué)實驗室建設(shè)方案
- 一年級上冊語文教案:同音字、多音字、形近字 復(fù)習(xí)教案(人教部編版)
- 中國汽車智能化功能模塊(汽車智能語音)行業(yè)市場運行態(tài)勢及發(fā)展趨勢預(yù)測報告-智研咨詢發(fā)布
評論
0/150
提交評論