




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省丹東市2024屆中考數(shù)學對點突破模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列說法正確的是()A.擲一枚均勻的骰子,骰子停止轉動后,6點朝上是必然事件B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定C.“明天降雨的概率為”,表示明天有半天都在降雨D.了解一批電視機的使用壽命,適合用普查的方式2.某校九年級“詩歌大會”比賽中,各班代表隊得分如下(單位:分):9,7,8,7,9,7,6,則各代表隊得分的中位數(shù)是(
)A.9分B.8分C.7分D.6分3.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.4.如圖,若銳角△ABC內接于⊙O,點D在⊙O外(與點C在AB同側),則∠C與∠D的大小關系為()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.無法確定5.一、單選題小明和小張兩人練習電腦打字,小明每分鐘比小張少打6個字,小明打120個字所用的時間和小張打180個字所用的時間相等.設小明打字速度為x個/分鐘,則列方程正確的是()A. B. C. D.6.下列運算正確的是()A.2a2+3a2=5a4 B.(﹣)﹣2=4C.(a+b)(﹣a﹣b)=a2﹣b2 D.8ab÷4ab=2ab7.在,,則的值為()A. B. C. D.8.如圖,在底邊BC為2,腰AB為2的等腰三角形ABC中,DE垂直平分AB于點D,交BC于點E,則△ACE的周長為()A.2+ B.2+2 C.4 D.39.如圖,點從矩形的頂點出發(fā),沿以的速度勻速運動到點,圖是點運動時,的面積隨運動時間變化而變化的函數(shù)關系圖象,則矩形的面積為()A. B. C. D.10.若正六邊形的半徑長為4,則它的邊長等于()A.4 B.2 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.64的立方根是_______.12.如圖1,點P從扇形AOB的O點出發(fā),沿O→A→B→0以1cm/s的速度勻速運動,圖2是點P運動時,線段OP的長度y隨時間x變化的關系圖象,則扇形AOB中弦AB的長度為______cm.13.如圖(a),有一張矩形紙片ABCD,其中AD=6cm,以AD為直徑的半圓,正好與對邊BC相切,將矩形紙片ABCD沿DE折疊,使點A落在BC上,如圖(b).則半圓還露在外面的部分(陰影部分)的面積為_______.14.如圖,小明在A時測得某樹的影長為3米,B時又測得該樹的影長為12米,若兩次日照的光線互相垂直,則樹的高度為_________米.15.如圖,CD是⊙O直徑,AB是弦,若CD⊥AB,∠BCD=25°,則∠AOD=_____°.16.如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=6,AD=8,則四邊形ABOM的周長為_____.17.如圖,A、D是⊙O上的兩個點,BC是直徑,若∠D=40°,則∠OAC=____度.三、解答題(共7小題,滿分69分)18.(10分)解方程:19.(5分)某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機抽取本校300名男生進行了問卷調查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖.請根據(jù)以上信息解答下列問題:課外體育鍛煉情況扇形統(tǒng)計圖中,“經常參加”所對應的圓心角的度數(shù)為______;請補全條形統(tǒng)計圖;該校共有1200名男生,請估計全校男生中經常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù);小明認為“全校所有男生中,課外最喜歡參加的運動項目是乒乓球的人數(shù)約為1200×=108”,請你判斷這種說法是否正確,并說明理由.20.(8分)“春節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“湯圓”的習俗.某食品廠為了解市民對去年銷量較好的肉餡(A)、豆沙餡(B)、菜餡(C)、三丁餡(D)四種不同口味湯圓的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).請根據(jù)以上信息回答:(1)本次參加抽樣調查的居民人數(shù)是人;(2)將圖①②補充完整;(直接補填在圖中)(3)求圖②中表示“A”的圓心角的度數(shù);(4)若居民區(qū)有8000人,請估計愛吃D湯圓的人數(shù).21.(10分)計算:2sin30°﹣|1﹣|+()﹣122.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點D的坐標;(2)點M是拋物線上的動點,設點M的橫坐標為m.①當∠MBA=∠BDE時,求點M的坐標;②過點M作MN∥x軸,與拋物線交于點N,P為x軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.23.(12分)甲、乙、丙3名學生各自隨機選擇到A、B2個書店購書.(1)求甲、乙2名學生在不同書店購書的概率;(2)求甲、乙、丙3名學生在同一書店購書的概率.24.(14分)為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達B處時,測得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結果保留根號).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】
利用事件的分類、普查和抽樣調查的特點、概率的意義以及方差的性質即可作出判斷.【題目詳解】解:A、擲一枚均勻的骰子,骰子停止轉動后,6點朝上是可能事件,此選項錯誤;B、甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,此選項正確;C、“明天降雨的概率為”,表示明天有可能降雨,此選項錯誤;D、解一批電視機的使用壽命,適合用抽查的方式,此選項錯誤;故選B.【題目點撥】本題考查方差;全面調查與抽樣調查;隨機事件;概率的意義,掌握基本概念是解題關鍵.2、C【解題分析】分析:根據(jù)中位數(shù)的定義,首先將這組數(shù)據(jù)按從小到大的順序排列起來,由于這組數(shù)據(jù)共有7個,故處于最中間位置的數(shù)就是第四個,從而得出答案.詳解:將這組數(shù)據(jù)按從小到大排列為:6<7<7<7<8<9<9,故中位數(shù)為:7分,故答案為:C.點睛:本題主要考查中位數(shù),解題的關鍵是掌握中位數(shù)的定義:將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).3、C【解題分析】試題解析:A.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C.既是中心對稱圖又是軸對稱圖形,故本選項正確;D.是軸對稱圖形,不是中心對稱圖形,故本選項錯誤.故選C.4、A【解題分析】
直接利用圓周角定理結合三角形的外角的性質即可得.【題目詳解】連接BE,如圖所示:
∵∠ACB=∠AEB,
∠AEB>∠D,
∴∠C>∠D.
故選:A.【題目點撥】考查了圓周角定理以及三角形的外角,正確作出輔助線是解題關鍵.5、C【解題分析】
解:因為設小明打字速度為x個/分鐘,所以小張打字速度為(x+6)個/分鐘,根據(jù)關系:小明打120個字所用的時間和小張打180個字所用的時間相等,可列方程得,故選C.【題目點撥】本題考查列分式方程解應用題,找準題目中的等量關系,難度不大.6、B【解題分析】
根據(jù)合并同類項的法則、平方差公式、冪的乘方與積的乘方運算法則對各選項依次進行判斷即可解答.【題目詳解】A.2a2+3a2=5a2,故本選項錯誤;B.(?)-2=4,正確;C.(a+b)(?a?b)=?a2?2ab?b2,故本選項錯誤;D.8ab÷4ab=2,故本選項錯誤.故答案選B.【題目點撥】本題考查了合并同類項的法則、平方差公式、冪的乘方與積的乘方運算法則,解題的關鍵是熟練的掌握合并同類項的法則、平方差公式、冪的乘方與積的乘方運算法則.7、A【解題分析】
本題可以利用銳角三角函數(shù)的定義求解即可.【題目詳解】解:tanA=,
∵AC=2BC,
∴tanA=.
故選:A.【題目點撥】本題考查了正切函數(shù)的概念,掌握直角三角形中角的對邊與鄰邊的比是關鍵.8、B【解題分析】分析:根據(jù)線段垂直平分線的性質,把三角形的周長問題轉化為線段和的問題解決即可.詳解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周長=AC+AE+CE=AC+BC=2+2,故選B.點睛:本題考查了等腰三角形性質和線段垂直平分線性質的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.9、C【解題分析】
由函數(shù)圖象可知AB=2×2=4,BC=(6-2)×2=8,根據(jù)矩形的面積公式可求出.【題目詳解】由函數(shù)圖象可知AB=2×2=4,BC=(6-2)×2=8,∴矩形的面積為4×8=32,故選:C.【題目點撥】本題考查動點運動問題、矩形面積等知識,根據(jù)圖形理解△ABP面積變化情況是解題的關鍵,屬于中考??碱}型.10、A【解題分析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長是1.故選A.考點:正多邊形和圓.二、填空題(共7小題,每小題3分,滿分21分)11、4.【解題分析】
根據(jù)立方根的定義即可求解.【題目詳解】∵43=64,∴64的立方根是4故答案為4【題目點撥】此題主要考查立方根的定義,解題的關鍵是熟知立方根的定義.12、【解題分析】
由圖2可以計算出OB的長度,然后利用OB=OA可以計算出通過弦AB的長度.【題目詳解】由圖2得通過OB所用的時間為s,則OB的長度為1×2=2cm,則通過弧AB的時間為s,則弧長AB為,利用弧長公式,得出∠AOB=120°,即可以算出AB為.【題目點撥】本題主要考查了從圖中提取信息的能力和弧長公式的運用及轉換,熟練運用公式是本題的解題關鍵.13、【解題分析】
解:如圖,作OH⊥DK于H,連接OK,∵以AD為直徑的半圓,正好與對邊BC相切,∴AD=2CD.∴根據(jù)折疊對稱的性質,A'D=2CD.∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.∴∠DOK=120°.∴扇形ODK的面積為.∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.∴△ODK的面積為.∴半圓還露在外面的部分(陰影部分)的面積是:.故答案為:.14、1【解題分析】
根據(jù)題意,畫出示意圖,易得:Rt△EDC∽Rt△FDC,進而可得;即DC2=ED?FD,代入數(shù)據(jù)可得答案.【題目詳解】根據(jù)題意,作△EFC,樹高為CD,且∠ECF=90°,ED=3,F(xiàn)D=12,易得:Rt△EDC∽Rt△DCF,有,即DC2=ED×FD,代入數(shù)據(jù)可得DC2=31,DC=1,故答案為1.15、50【解題分析】
由CD是⊙O的直徑,弦AB⊥CD,根據(jù)垂徑定理的即可求得
=,又由圓周角定理,可得∠AOD=50°.【題目詳解】∵CD是⊙O的直徑,弦AB⊥CD,
∴=,
∵∠BCD=25°=,
∴∠AOD=2∠BCD=50°,
故答案為50【題目點撥】本題考查角度的求解,解題的關鍵是利用垂徑定理.16、1.【解題分析】
根據(jù)矩形的性質,直角三角形斜邊中線性質,三角形中位線性質求出BO、OM、AM即可解決問題.【題目詳解】解:∵四邊形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴∵AO=OC,∴∵AO=OC,AM=MD=4,∴∴四邊形ABOM的周長為AB+OB+OM+AM=6+5+3+4=1.故答案為:1.【題目點撥】本題看成矩形的性質、三角形中位線定理、直角三角形斜邊中線性質等知識,解題的關鍵是靈活應用中線知識解決問題,屬于中考常考題型.17、50【解題分析】
根據(jù)BC是直徑得出∠B=∠D=40°,∠BAC=90°,再根據(jù)半徑相等所對應的角相等求出∠BAO,在直角三角形BAC中即可求出∠OAC【題目詳解】∵BC是直徑,∠D=40°,∴∠B=∠D=40°,∠BAC=90°.∵OA=OB,∴∠BAO=∠B=40°,∴∠OAC=∠BAC﹣∠BAO=90°﹣40°=50°.故答案為:50【題目點撥】本題考查了圓的基本概念、角的概念及其計算等腰三角形以及三角形的基本概念,熟悉掌握概念是解題的關鍵三、解答題(共7小題,滿分69分)18、x=-4是方程的解【解題分析】
分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解.【題目詳解】∴x=-4,當x=-4時,∴x=-4是方程的解【題目點撥】本題考查了分式方程的解法,(1)解分式方程的基本思想是“轉化思想”,把分式方程轉化為整式方程求解.(2)解分式方程一定注意要驗根.19、(1)144°;(2)補圖見解析;(3)160人;(4)這個說法不正確,理由見解析.【解題分析】
試題分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案為144°;(2)“經常參加”的人數(shù)為:300×40%=120人,喜歡籃球的學生人數(shù)為:120﹣27﹣33﹣20=120﹣80=40人;補全統(tǒng)計圖如圖所示;(3)全校男生中經常參加課外體育鍛煉并且最喜歡的項目是籃球的人數(shù)約為:1200×=160人;(4)這個說法不正確.理由如下:小明得到的108人是經常參加課外體育鍛煉的男生中最喜歡的項目是乒乓球的人數(shù),而全校偶爾參加課外體育鍛煉的男生中也會有最喜歡乒乓球的,因此應多于108人.考點:①條形統(tǒng)計圖;②扇形統(tǒng)計圖.20、(1)600;(2)120人,20%;30%;(3)108°(4)愛吃D湯圓的人數(shù)約為3200人【解題分析】試題分析:(1)由兩幅統(tǒng)計圖中的信息可知,喜歡B類的有60人,占被調查人數(shù)的10%,由此即可計算出被調查的總人數(shù)為60÷10%=600(人);(2)由(1)中所得被調查總人數(shù)為600人結合統(tǒng)計圖中已有的數(shù)據(jù)可得喜歡C類的人數(shù)為:600-180-60-240=120(人),喜歡C類的占總人數(shù)的百分比為:120÷600×100%=20%,喜歡A類的占總人數(shù)的百分比為:180÷600×100%=30%,由此即可將統(tǒng)計圖補充完整;(3)由(2)中所得數(shù)據(jù)可得扇形統(tǒng)計圖中A類所對應的圓心角度數(shù)為:360°×30%=108°;(4)由扇形統(tǒng)計圖中的信息:喜歡D類的占總人數(shù)的40%可得:8000×40%=3200(人);試題解析:(1)本次參加抽樣調查的居民的人數(shù)是:60÷10%=600(人);故答案為600;(2)由題意得:C的人數(shù)為600﹣(180+60+240)=600﹣480=120(人),C的百分比為120÷600×100%=20%;A的百分比為180÷600×100%=30%;將兩幅統(tǒng)計圖補充完整如下所示:(3)根據(jù)題意得:360°×30%=108°,∴圖②中表示“A”的圓心角的度數(shù)108°;(4)8000×40%=3200(人),即愛吃D湯圓的人數(shù)約為3200人.21、4﹣【解題分析】
原式利用絕對值的代數(shù)意義,特殊角的三角函數(shù)值,負整數(shù)指數(shù)冪的法則計算即可.【題目詳解】原式=2×﹣(﹣1)+2=1﹣+1+2=4﹣.【題目點撥】本題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.22、(1)(1,4)(2)①點M坐標(﹣,)或(﹣,﹣);②m的值為或【解題分析】
(1)利用待定系數(shù)法即可解決問題;(2)①根據(jù)tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,構建方程即可解決問題;②因為點M、N關于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.【題目詳解】解:(1)把點B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴拋物線的解析式為y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴頂點D坐標(1,4);(2)①作MG⊥x軸于G,連接BM.則∠MGB=90°,設M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=,∵DE⊥x軸,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=,當點M在x軸上方時,=,解得m=﹣或3(舍棄),∴M(﹣,),當點M在x軸下方時,=,解得m=﹣或m=3(舍棄),∴點M(﹣,﹣),綜上所述,滿足條件的點M坐標(﹣,)或(﹣,﹣);②如圖中,∵MN∥x軸,∴點M、N關于拋物線的對稱軸對稱,∵四邊形MPNQ是正方形,∴點P是拋物線的對稱軸與x軸的交點,即OP=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技與商業(yè)共創(chuàng)未來新商業(yè)生態(tài)
- 科技研發(fā)過程中的數(shù)據(jù)質量控制
- 知識產權教育在高校教育中的推廣
- 2025至2030年中國荷花牛座筆筒數(shù)據(jù)監(jiān)測研究報告
- 科技英語四六級考試與科技發(fā)展趨勢
- 2025至2030年中國茶樹菇粉數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國蘆薈滋潤潔面乳數(shù)據(jù)監(jiān)測研究報告
- 2025年度社區(qū)文明創(chuàng)建志愿服務協(xié)議
- 電商教育從知識傳授到能力培養(yǎng)的轉變
- 科技辦公環(huán)境下的知識產權問題及應對策略
- 比亞迪漢DM-i說明書
- 晚熟的人(莫言諾獎后首部作品)
- GA/T 2002-2022多道心理測試通用技術規(guī)程
- 腫瘤心臟病學和心臟腫瘤學-m
- 《玉磨彌蒙鐵路建設項目標準化管理考核實施辦法》的通知滇南安質〔XXXX〕號
- 2022年10月自考00043經濟法概論(財經類)試題及答案
- 橋梁施工流程圖
- 新人教鄂教版(2017)五年級下冊科學全冊教學課件
- 工程電磁場靜電場第講
- 保險資金ESG投資發(fā)展研究報告
- TBPMA 0009-2021 生活飲用水二次供水水箱(池)清洗消毒技術規(guī)范
評論
0/150
提交評論