河南省襄城縣春聯(lián)考2024屆中考五模數(shù)學(xué)試題含解析_第1頁(yè)
河南省襄城縣春聯(lián)考2024屆中考五模數(shù)學(xué)試題含解析_第2頁(yè)
河南省襄城縣春聯(lián)考2024屆中考五模數(shù)學(xué)試題含解析_第3頁(yè)
河南省襄城縣春聯(lián)考2024屆中考五模數(shù)學(xué)試題含解析_第4頁(yè)
河南省襄城縣春聯(lián)考2024屆中考五模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河南省襄城縣春聯(lián)考2024學(xué)年中考五模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列函數(shù)中,y隨著x的增大而減小的是()A.y=3x B.y=﹣3x C. D.2.已知一組數(shù)據(jù)2、x、8、1、1、2的眾數(shù)是2,那么這組數(shù)據(jù)的中位數(shù)是()A.3.1;B.4;C.2;D.6.1.3.如圖,將矩形ABCD沿EM折疊,使頂點(diǎn)B恰好落在CD邊的中點(diǎn)N上.若AB=6,AD=9,則五邊形ABMND的周長(zhǎng)為()A.28 B.26 C.25 D.224.如圖是某個(gè)幾何體的三視圖,該幾何體是()A.圓錐 B.四棱錐 C.圓柱 D.四棱柱5.若一元二次方程x2﹣2x+m=0有兩個(gè)不相同的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<16.如圖,A、B、C、D是⊙O上的四點(diǎn),BD為⊙O的直徑,若四邊形ABCO是平行四邊形,則∠ADB的大小為()A.30° B.45° C.60° D.75°7.如圖,點(diǎn)A、B、C都在⊙O上,若∠AOC=140°,則∠B的度數(shù)是()A.70° B.80° C.110° D.140°8.下列運(yùn)算正確的是()A.2a+3a=5a2B.(a3)3=a9C.a(chǎn)2?a4=a8D.a(chǎn)6÷a3=a29.如圖所示圖形中,不是正方體的展開(kāi)圖的是()A. B.C. D.10.已知關(guān)于x的不等式3x﹣m+1>0的最小整數(shù)解為2,則實(shí)數(shù)m的取值范圍是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤711.下列實(shí)數(shù)中是無(wú)理數(shù)的是()A. B.2﹣2 C.5. D.sin45°12.已知方程組,那么x+y的值()A.-1 B.1 C.0 D.5二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖是我區(qū)某一天內(nèi)的氣溫變化圖,結(jié)合該圖給出的信息寫出一個(gè)正確的結(jié)論:________.14.如圖,在△ABC中,∠C=90°,AC=BC=2,將△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B=______15.如圖,在每個(gè)小正方形邊長(zhǎng)為的網(wǎng)格中,的頂點(diǎn),,均在格點(diǎn)上,為邊上的一點(diǎn).線段的值為_(kāi)_____________;在如圖所示的網(wǎng)格中,是的角平分線,在上求一點(diǎn),使的值最小,請(qǐng)用無(wú)刻度的直尺,畫出和點(diǎn),并簡(jiǎn)要說(shuō)明和點(diǎn)的位置是如何找到的(不要求證明)___________.16.太陽(yáng)半徑約為696000千米,數(shù)字696000用科學(xué)記數(shù)法表示為千米.17.函數(shù)中,自變量的取值范圍是______.18.大連市內(nèi)與莊河兩地之間的距離是160千米,若汽車以平均每小時(shí)80千米的速度從大連市內(nèi)開(kāi)往莊河,則汽車距莊河的路程y(千米)與行駛的時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式為_(kāi)____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖1,在平面直角坐標(biāo)系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點(diǎn)A(1,0)和點(diǎn)D(﹣4,5),并與y軸交于點(diǎn)C,拋物線的對(duì)稱軸為直線x=﹣1,且拋物線與x軸交于另一點(diǎn)B.(1)求該拋物線的函數(shù)表達(dá)式;(2)若點(diǎn)E是直線下方拋物線上的一個(gè)動(dòng)點(diǎn),求出△ACE面積的最大值;(3)如圖2,若點(diǎn)M是直線x=﹣1的一點(diǎn),點(diǎn)N在拋物線上,以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能否成為平行四邊形?若能,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.20.(6分)圖1所示的遮陽(yáng)傘,傘柄垂直于水平地面,其示意圖如圖2、當(dāng)傘收緊時(shí),點(diǎn)P與點(diǎn)A重合;當(dāng)傘慢慢撐開(kāi)時(shí),動(dòng)點(diǎn)P由A向B移動(dòng);當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),傘張得最開(kāi)、已知傘在撐開(kāi)的過(guò)程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、設(shè)AP=x分米.(1)求x的取值范圍;(2)若∠CPN=60°,求x的值;(3)設(shè)陽(yáng)光直射下,傘下的陰影(假定為圓面)面積為y,求y關(guān)于x的關(guān)系式(結(jié)果保留π).21.(6分)(定義)如圖1,A,B為直線l同側(cè)的兩點(diǎn),過(guò)點(diǎn)A作直線1的對(duì)稱點(diǎn)A′,連接A′B交直線l于點(diǎn)P,連接AP,則稱點(diǎn)P為點(diǎn)A,B關(guān)于直線l的“等角點(diǎn)”.(運(yùn)用)如圖2,在平面直坐標(biāo)系xOy中,已知A(2,3),B(﹣2,﹣3)兩點(diǎn).(1)C(4,32),D(4,22),E(4,12(2)若直線l垂直于x軸,點(diǎn)P(m,n)是點(diǎn)A,B關(guān)于直線l的等角點(diǎn),其中m>2,∠APB=α,求證:tanα2=n(3)若點(diǎn)P是點(diǎn)A,B關(guān)于直線y=ax+b(a≠0)的等角點(diǎn),且點(diǎn)P位于直線AB的右下方,當(dāng)∠APB=60°時(shí),求b的取值范圍(直接寫出結(jié)果).22.(8分)研究發(fā)現(xiàn),拋物線上的點(diǎn)到點(diǎn)F(0,1)的距離與到直線l:的距離相等.如圖1所示,若點(diǎn)P是拋物線上任意一點(diǎn),PH⊥l于點(diǎn)H,則PF=PH.基于上述發(fā)現(xiàn),對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)M,記點(diǎn)到點(diǎn)的距離與點(diǎn)到點(diǎn)的距離之和的最小值為d,稱d為點(diǎn)M關(guān)于拋物線的關(guān)聯(lián)距離;當(dāng)時(shí),稱點(diǎn)M為拋物線的關(guān)聯(lián)點(diǎn).(1)在點(diǎn),,,中,拋物線的關(guān)聯(lián)點(diǎn)是_____;(2)如圖2,在矩形ABCD中,點(diǎn),點(diǎn),①若t=4,點(diǎn)M在矩形ABCD上,求點(diǎn)M關(guān)于拋物線的關(guān)聯(lián)距離d的取值范圍;②若矩形ABCD上的所有點(diǎn)都是拋物線的關(guān)聯(lián)點(diǎn),則t的取值范圍是________.23.(8分)如圖1,矩形ABCD中,E是AD的中點(diǎn),以點(diǎn)E直角頂點(diǎn)的直角三角形EFG的兩邊EF,EG分別過(guò)點(diǎn)B,C,∠F=30°.(1)求證:BE=CE(2)將△EFG繞點(diǎn)E按順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時(shí)停止轉(zhuǎn)動(dòng).若EF,EG分別與AB,BC相交于點(diǎn)M,N.(如圖2)①求證:△BEM≌△CEN;②若AB=2,求△BMN面積的最大值;③當(dāng)旋轉(zhuǎn)停止時(shí),點(diǎn)B恰好在FG上(如圖3),求sin∠EBG的值.24.(10分)甲班有45人,乙班有39人.現(xiàn)在需要從甲、乙班各抽調(diào)一些同學(xué)去參加歌詠比賽.如果從甲班抽調(diào)的人數(shù)比乙班多1人,那么甲班剩余人數(shù)恰好是乙班剩余人數(shù)的2倍.請(qǐng)問(wèn)從甲、乙兩班各抽調(diào)了多少參加歌詠比賽?25.(10分)某公司投入研發(fā)費(fèi)用80萬(wàn)元(80萬(wàn)元只計(jì)入第一年成本),成功研發(fā)出一種產(chǎn)品.公司按訂單生產(chǎn)(產(chǎn)量=銷售量),第一年該產(chǎn)品正式投產(chǎn)后,生產(chǎn)成本為6元/件.此產(chǎn)品年銷售量y(萬(wàn)件)與售價(jià)x(元/件)之間滿足函數(shù)關(guān)系式y(tǒng)=﹣x+1.求這種產(chǎn)品第一年的利潤(rùn)W1(萬(wàn)元)與售價(jià)x(元/件)滿足的函數(shù)關(guān)系式;該產(chǎn)品第一年的利潤(rùn)為20萬(wàn)元,那么該產(chǎn)品第一年的售價(jià)是多少?第二年,該公司將第一年的利潤(rùn)20萬(wàn)元(20萬(wàn)元只計(jì)入第二年成本)再次投入研發(fā),使產(chǎn)品的生產(chǎn)成本降為5元/件.為保持市場(chǎng)占有率,公司規(guī)定第二年產(chǎn)品售價(jià)不超過(guò)第一年的售價(jià),另外受產(chǎn)能限制,銷售量無(wú)法超過(guò)12萬(wàn)件.請(qǐng)計(jì)算該公司第二年的利潤(rùn)W2至少為多少萬(wàn)元.26.(12分)對(duì)于方程x2解:方程兩邊同乘6,得3x﹣2(x﹣1)=1①去括號(hào),得3x﹣2x﹣2=1②合并同類項(xiàng),得x﹣2=1③解得x=3④∴原方程的解為x=3⑤上述解答過(guò)程中的錯(cuò)誤步驟有(填序號(hào));請(qǐng)寫出正確的解答過(guò)程.27.(12分)已知,如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過(guò)D作DE⊥MN于E.求證:DE是⊙O的切線;若DE=6cm,AE=3cm,求⊙O的半徑.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解題分析】試題分析:A、y=3x,y隨著x的增大而增大,故此選項(xiàng)錯(cuò)誤;B、y=﹣3x,y隨著x的增大而減小,正確;C、,每個(gè)象限內(nèi),y隨著x的增大而減小,故此選項(xiàng)錯(cuò)誤;D、,每個(gè)象限內(nèi),y隨著x的增大而增大,故此選項(xiàng)錯(cuò)誤;故選B.考點(diǎn):反比例函數(shù)的性質(zhì);正比例函數(shù)的性質(zhì).2、A【解題分析】∵數(shù)據(jù)組2、x、8、1、1、2的眾數(shù)是2,∴x=2,∴這組數(shù)據(jù)按從小到大排列為:2、2、2、1、1、8,∴這組數(shù)據(jù)的中位數(shù)是:(2+1)÷2=3.1.故選A.3、A【解題分析】

如圖,運(yùn)用矩形的性質(zhì)首先證明CN=3,∠C=90°;運(yùn)用翻折變換的性質(zhì)證明BM=MN(設(shè)為λ),運(yùn)用勾股定理列出關(guān)于λ的方程,求出λ,即可解決問(wèn)題.【題目詳解】如圖,由題意得:BM=MN(設(shè)為λ),CN=DN=3;∵四邊形ABCD為矩形,∴BC=AD=9,∠C=90°,MC=9-λ;由勾股定理得:λ2=(9-λ)2+32,解得:λ=5,∴五邊形ABMND的周長(zhǎng)=6+5+5+3+9=28,故選A.【題目點(diǎn)撥】該題主要考查了翻折變換的性質(zhì)、矩形的性質(zhì)、勾股定理等幾何知識(shí)點(diǎn)及其應(yīng)用問(wèn)題;解題的關(guān)鍵是靈活運(yùn)用翻折變換的性質(zhì)、矩形的性質(zhì)、勾股定理等幾何知識(shí)點(diǎn)來(lái)分析、判斷、推理或解答.4、B【解題分析】

由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀【題目詳解】解:根據(jù)主視圖和左視圖為矩形判斷出是柱體,根據(jù)俯視圖是長(zhǎng)方形可判斷出這個(gè)幾何體應(yīng)該是四棱柱.故選B.【題目點(diǎn)撥】本題考查了由三視圖找到幾何體圖形,屬于簡(jiǎn)單題,熟悉三視圖概念是解題關(guān)鍵.5、D【解題分析】分析:根據(jù)方程的系數(shù)結(jié)合根的判別式△>0,即可得出關(guān)于m的一元一次不等式,解之即可得出實(shí)數(shù)m的取值范圍.詳解:∵方程有兩個(gè)不相同的實(shí)數(shù)根,∴解得:m<1.故選D.點(diǎn)睛:本題考查了根的判別式,牢記“當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根”是解題的關(guān)鍵.6、A【解題分析】

解:∵四邊形ABCO是平行四邊形,且OA=OC,∴四邊形ABCO是菱形,∴AB=OA=OB,∴△OAB是等邊三角形,∴∠AOB=60°,∵BD是⊙O的直徑,∴點(diǎn)B、D、O在同一直線上,∴∠ADB=∠AOB=30°故選A.7、C【解題分析】分析:作對(duì)的圓周角∠APC,如圖,利用圓內(nèi)接四邊形的性質(zhì)得到∠P=40°,然后根據(jù)圓周角定理求∠AOC的度數(shù).詳解:作對(duì)的圓周角∠APC,如圖,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故選:C.點(diǎn)睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.8、B【解題分析】

直接利用同底數(shù)冪的乘除運(yùn)算法則以及冪的乘方運(yùn)算法則、合并同類項(xiàng)法則分別化簡(jiǎn)得出答案.【題目詳解】A、2a+3a=5a,故此選項(xiàng)錯(cuò)誤;B、(a3)3=a9,故此選項(xiàng)正確;C、a2?a4=a6,故此選項(xiàng)錯(cuò)誤;D、a6÷a3=a3,故此選項(xiàng)錯(cuò)誤.故選:B.【題目點(diǎn)撥】此題主要考查了同底數(shù)冪的乘除運(yùn)算以及合并同類項(xiàng)和冪的乘方運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.9、C【解題分析】

由平面圖形的折疊及正方形的展開(kāi)圖結(jié)合本題選項(xiàng),一一求證解題.【題目詳解】解:A、B、D都是正方體的展開(kāi)圖,故選項(xiàng)錯(cuò)誤;C、帶“田”字格,由正方體的展開(kāi)圖的特征可知,不是正方體的展開(kāi)圖.故選C.【題目點(diǎn)撥】此題考查正方形的展開(kāi)圖,難度不大,但是需要空間想象力才能更好的解題10、A【解題分析】

先解出不等式,然后根據(jù)最小整數(shù)解為2得出關(guān)于m的不等式組,解之即可求得m的取值范圍.【題目詳解】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整數(shù)解2,∴1≤<2,解得:4≤m<7,故選A.【題目點(diǎn)撥】本題考查了一元一次不等式的整數(shù)解,解一元一次不等式組,正確解不等式,熟練掌握一元一次不等式、一元一次不等式組的解法是解答本題的關(guān)鍵.11、D【解題分析】A、是有理數(shù),故A選項(xiàng)錯(cuò)誤;B、是有理數(shù),故B選項(xiàng)錯(cuò)誤;C、是有理數(shù),故C選項(xiàng)錯(cuò)誤;D、是無(wú)限不循環(huán)小數(shù),是無(wú)理數(shù),故D選項(xiàng)正確;故選:D.12、D【解題分析】

解:,①+②得:3(x+y)=15,則x+y=5,故選D二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、這一天的最高氣溫約是26°【解題分析】

根據(jù)我區(qū)某一天內(nèi)的氣溫變化圖,分析變化趨勢(shì)和具體數(shù)值,即可求出答案.【題目詳解】解:根據(jù)圖象可得這一天的最高氣溫約是26°,故答案為:這一天的最高氣溫約是26°.【題目點(diǎn)撥】本題考查的是函數(shù)圖象問(wèn)題,統(tǒng)計(jì)圖的綜合運(yùn)用.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息是解決問(wèn)題的關(guān)鍵.14、3【解題分析】如圖,連接BB′,∵△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′,在△ABC′和△B′BC′中,AB=BB'AC'=B'C'∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長(zhǎng)BC′交AB′于D,則BD⊥AB′,∵∠C=90°,AC=BC=2,∴AB=(2∴BD=2×32=3C′D=12∴BC′=BD?C′D=3?1.故答案為:3?1.點(diǎn)睛:本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),作輔助線構(gòu)造出全等三角形并求出BC′在等邊三角形的高上是解題的關(guān)鍵,也是本題的難點(diǎn).15、(Ⅰ)(Ⅱ)如圖,取格點(diǎn)、,連接與交于點(diǎn),連接與交于點(diǎn).【解題分析】

(Ⅰ)根據(jù)勾股定理進(jìn)行計(jì)算即可.(Ⅱ)根據(jù)菱形的每一條對(duì)角線平分每一組對(duì)角,構(gòu)造邊長(zhǎng)為1的菱形ABEC,連接AE交BC于M,即可得出是的角平分線,再取點(diǎn)F使AF=1,則根據(jù)等腰三角形的性質(zhì)得出點(diǎn)C與F關(guān)于AM對(duì)稱,連接DF交AM于點(diǎn)P,此時(shí)的值最?。绢}目詳解】(Ⅰ)根據(jù)勾股定理得AC=;故答案為:1.(Ⅱ)如圖,如圖,取格點(diǎn)、,連接與交于點(diǎn),連接與交于點(diǎn),則點(diǎn)P即為所求.說(shuō)明:構(gòu)造邊長(zhǎng)為1的菱形ABEC,連接AE交BC于M,則AM即為所求的的角平分線,在AB上取點(diǎn)F,使AF=AC=1,則AM垂直平分CF,點(diǎn)C與F關(guān)于AM對(duì)稱,連接DF交AM于點(diǎn)P,則點(diǎn)P即為所求.【題目點(diǎn)撥】本題考查作圖-應(yīng)用與設(shè)計(jì),涉及勾股定理、菱形的判定和性質(zhì)、幾何變換軸對(duì)稱—最短距離等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問(wèn)題.16、.【解題分析】試題分析:696000=6.96×1,故答案為6.96×1.考點(diǎn):科學(xué)記數(shù)法—表示較大的數(shù).17、【解題分析】

根據(jù)分式有意義的條件是分母不為2;分析原函數(shù)式可得關(guān)系式x?1≠2,解得答案.【題目詳解】根據(jù)題意得x?1≠2,解得:x≠1;故答案為:x≠1.【題目點(diǎn)撥】本題主要考查自變量得取值范圍的知識(shí)點(diǎn),當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為2.18、y=160﹣80x(0≤x≤2)【解題分析】

根據(jù)汽車距莊河的路程y(千米)=原來(lái)兩地的距離﹣汽車行駛的距離,解答即可.【題目詳解】解:∵汽車的速度是平均每小時(shí)80千米,∴它行駛x小時(shí)走過(guò)的路程是80x,∴汽車距莊河的路程y=160﹣80x(0≤x≤2),故答案為:y=160﹣80x(0≤x≤2).【題目點(diǎn)撥】本題考查了根據(jù)實(shí)際問(wèn)題確定一次函數(shù)的解析式,找到所求量的等量關(guān)系是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)y=x2+2x﹣3;(2);(3)詳見(jiàn)解析.【解題分析】試題分析:(1)先利用拋物線的對(duì)稱性確定出點(diǎn)B的坐標(biāo),然后設(shè)拋物線的解析式為y=a(x+3)(x-1),將點(diǎn)D的坐標(biāo)代入求得a的值即可;(2)過(guò)點(diǎn)E作EF∥y軸,交AD與點(diǎn)F,過(guò)點(diǎn)C作CH⊥EF,垂足為H.設(shè)點(diǎn)E(m,m2+2m-3),則F(m,-m+1),則EF=-m2-3m+4,然后依據(jù)△ACE的面積=△EFA的面積-△EFC的面積列出三角形的面積與m的函數(shù)關(guān)系式,然后利用二次函數(shù)的性質(zhì)求得△ACE的最大值即可;(3)當(dāng)AD為平行四邊形的對(duì)角線時(shí).設(shè)點(diǎn)M的坐標(biāo)為(-1,a),點(diǎn)N的坐標(biāo)為(x,y),利用平行四邊形對(duì)角線互相平分的性質(zhì)可求得x的值,然后將x=-2代入求得對(duì)應(yīng)的y值,然后依據(jù)=,可求得a的值;當(dāng)AD為平行四邊形的邊時(shí).設(shè)點(diǎn)M的坐標(biāo)為(-1,a).則點(diǎn)N的坐標(biāo)為(-6,a+5)或(4,a-5),將點(diǎn)N的坐標(biāo)代入拋物線的解析式可求得a的值.試題解析:(1)∴A(1,0),拋物線的對(duì)稱軸為直線x=-1,∴B(-3,0),設(shè)拋物線的表達(dá)式為y=a(x+3)(x-1),將點(diǎn)D(-4,5)代入,得5a=5,解得a=1,∴拋物線的表達(dá)式為y=x2+2x-3;(2)過(guò)點(diǎn)E作EF∥y軸,交AD與點(diǎn)F,交x軸于點(diǎn)G,過(guò)點(diǎn)C作CH⊥EF,垂足為H.設(shè)點(diǎn)E(m,m2+2m-3),則F(m,-m+1).∴EF=-m+1-m2-2m+3=-m2-3m+4.∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=-(m+)2+.∴△ACE的面積的最大值為;(3)當(dāng)AD為平行四邊形的對(duì)角線時(shí):設(shè)點(diǎn)M的坐標(biāo)為(-1,a),點(diǎn)N的坐標(biāo)為(x,y).∴平行四邊形的對(duì)角線互相平分,∴=,=,解得x=-2,y=5-a,將點(diǎn)N的坐標(biāo)代入拋物線的表達(dá)式,得5-a=-3,解得a=8,∴點(diǎn)M的坐標(biāo)為(-1,8),當(dāng)AD為平行四邊形的邊時(shí):設(shè)點(diǎn)M的坐標(biāo)為(-1,a),則點(diǎn)N的坐標(biāo)為(-6,a+5)或(4,a-5),∴將x=-6,y=a+5代入拋物線的表達(dá)式,得a+5=36-12-3,解得a=16,∴M(-1,16),將x=4,y=a-5代入拋物線的表達(dá)式,得a-5=16+8-3,解得a=26,∴M(-1,26),綜上所述,當(dāng)點(diǎn)M的坐標(biāo)為(-1,26)或(-1,16)或(-1,8)時(shí),以點(diǎn)A,D,M,N為頂點(diǎn)的四邊形能成為平行四邊形.20、(1)0≤x≤10;(1)x=6;(3)y=﹣πx1+54πx.【解題分析】

(1)根據(jù)題意,得AC=CN+PN,進(jìn)一步求得AB的長(zhǎng),即可求得x的取值范圍;(1)根據(jù)等邊三角形的判定和性質(zhì)即可求解;(3)連接MN、EF,分別交AC于B、H.此題根據(jù)菱形CMPN的性質(zhì)求得MB的長(zhǎng),再根據(jù)相似三角形的對(duì)應(yīng)邊的比相等,求得圓的半徑即可.【題目詳解】(1)∵BC=1分米,AC=CN+PN=11分米,∴AB=AC﹣BC=10分米,∴x的取值范圍是:0≤x≤10;(1)∵CN=PN,∠CPN=60°,∴△PCN是等邊三角形,∴CP=6分米,∴AP=AC﹣PC=6分米,即當(dāng)∠CPN=60°時(shí),x=6;(3)連接MN、EF,分別交AC于B、H,∵PM=PN=CM=CN,∴四邊形PNCM是菱形,∴MN與PC互相垂直平分,AC是∠ECF的平分線,PB==6-,在Rt△MBP中,PM=6分米,∴MB1=PM1﹣PB1=61﹣(6﹣x)1=6x﹣x1.∵CE=CF,AC是∠ECF的平分線,∴EH=HF,EF⊥AC,∵∠ECH=∠MCB,∠EHC=∠MBC=90°,∴△CMB∽△CEH,∴=,∴,∴EH1=9?MB1=9?(6x﹣x1),∴y=π?EH1=9π(6x﹣x1),即y=﹣πx1+54πx.【題目點(diǎn)撥】此題主要考查了相似三角形的應(yīng)用以及菱形的性質(zhì)和二次函數(shù)的應(yīng)用,難點(diǎn)是第(3)問(wèn),熟練運(yùn)用菱形的性質(zhì)、相似三角形的性質(zhì)和二次函數(shù)的實(shí)際應(yīng)用.21、(1)C(2)n2(3)b<﹣735且b≠﹣2【解題分析】

(1)先求出B關(guān)于直線x=4的對(duì)稱點(diǎn)B′的坐標(biāo),根據(jù)A、B′的坐標(biāo)可得直線AB′的解析式,把x=4代入求出P點(diǎn)的縱坐標(biāo)即可得答案;(2)如圖:過(guò)點(diǎn)A作直線l的對(duì)稱點(diǎn)A′,連A′B′,交直線l于點(diǎn)P,作BH⊥l于點(diǎn)H,根據(jù)對(duì)稱性可知∠APG=A′PG,由∠AGP=∠BHP=90°可證明△AGP∽△BHP,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得m=2根據(jù)外角性質(zhì)可知∠A=∠A′=α2根據(jù)對(duì)稱性質(zhì)可證明△ABQ是等邊三角形,即點(diǎn)Q為定點(diǎn),若直線y=ax+b(a≠0)與圓相切,易得P、Q重合,所以直線y=ax+b(a≠0)過(guò)定點(diǎn)Q,連OQ,過(guò)點(diǎn)A、Q分別作AM⊥y軸,QN⊥y軸,垂足分別為M、N,可證明△AMO∽△ONQ,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得ON、NQ的長(zhǎng),即可得Q點(diǎn)坐標(biāo),根據(jù)A、B、Q的坐標(biāo)可求出直線AQ、BQ的解析式,根據(jù)P與A、B重合時(shí)b的值求出b的取值范圍即可.【題目詳解】(1)點(diǎn)B關(guān)于直線x=4的對(duì)稱點(diǎn)為B′(10,﹣3),∴直線AB′解析式為:y=﹣34當(dāng)x=4時(shí),y=32故答案為:C(2)如圖,過(guò)點(diǎn)A作直線l的對(duì)稱點(diǎn)A′,連A′B′,交直線l于點(diǎn)P作BH⊥l于點(diǎn)H∵點(diǎn)A和A′關(guān)于直線l對(duì)稱∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴AGBH=GP∴mn=23,即m=23∵∠APB=α,AP=AP′,∴∠A=∠A′=α2在Rt△AGP中,tanα2=(3)如圖,當(dāng)點(diǎn)P位于直線AB的右下方,∠APB=60°時(shí),點(diǎn)P在以AB為弦,所對(duì)圓周為60°,且圓心在AB下方若直線y=ax+b(a≠0)與圓相交,設(shè)圓與直線y=ax+b(a≠0)的另一個(gè)交點(diǎn)為Q由對(duì)稱性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等邊三角形∵線段AB為定線段∴點(diǎn)Q為定點(diǎn)若直線y=ax+b(a≠0)與圓相切,易得P、Q重合∴直線y=ax+b(a≠0)過(guò)定點(diǎn)Q連OQ,過(guò)點(diǎn)A、Q分別作AM⊥y軸,QN⊥y軸,垂足分別為M、N∵A(2,3),B(﹣2,﹣3)∴OA=OB=7∵△ABQ是等邊三角形∴∠AOQ=∠BOQ=90°,OQ=3OB=∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO=∠ONQ=90°∴△AMO∽△ONQ∴AMON∴20N∴ON=23,NQ=3,∴Q點(diǎn)坐標(biāo)為(3,﹣23)設(shè)直線BQ解析式為y=kx+b將B、Q坐標(biāo)代入得-3解得k=-3∴直線BQ的解析式為:y=﹣35設(shè)直線AQ的解析式為:y=mx+n,將A、Q兩點(diǎn)代入3=2m+n解得m=-33∴直線AQ的解析式為:y=﹣33x+7若點(diǎn)P與B點(diǎn)重合,則直線PQ與直線BQ重合,此時(shí),b=﹣73若點(diǎn)P與點(diǎn)A重合,則直線PQ與直線AQ重合,此時(shí),b=73又∵y=ax+b(a≠0),且點(diǎn)P位于AB右下方,∴b<﹣735且b≠﹣23或b>【題目點(diǎn)撥】本題考查對(duì)稱性質(zhì)、相似三角形的判定與性質(zhì)、根據(jù)待定系數(shù)法求一次函數(shù)解析式及銳角三角函數(shù)正切的定義,熟練掌握相關(guān)知識(shí)是解題關(guān)鍵.22、(1)(2)①②【解題分析】【分析】(1)根據(jù)關(guān)聯(lián)點(diǎn)的定義逐一進(jìn)行判斷即可得;(2))①當(dāng)時(shí),,,,,可以確定此時(shí)矩形上的所有點(diǎn)都在拋物線的下方,所以可得,由此可知,從而可得;②由①知,分兩種情況畫出圖形進(jìn)行討論即可得.【題目詳解】(1),x=2時(shí),y==1,此時(shí)P(2,1),則d=1+2=3,符合定義,是關(guān)聯(lián)點(diǎn);,x=1時(shí),y==,此時(shí)P(1,),則d=+=3,符合定義,是關(guān)聯(lián)點(diǎn);,x=4時(shí),y==4,此時(shí)P(4,4),則d=1+=6,不符合定義,不是關(guān)聯(lián)點(diǎn);,x=0時(shí),y==0,此時(shí)P(0,0),則d=4+5=9,不不符合定義,是關(guān)聯(lián)點(diǎn),故答案為;(2)①當(dāng)時(shí),,,,,此時(shí)矩形上的所有點(diǎn)都在拋物線的下方,∴,∴,∵,∴;②由①,,如圖2所示時(shí),CF最長(zhǎng),當(dāng)CF=4時(shí),即=4,解得:t=,如圖3所示時(shí),DF最長(zhǎng),當(dāng)DF=4時(shí),即DF==4,解得t=,故答案為【題目點(diǎn)撥】本題考查了新定義題,二次函數(shù)的綜合,題目較難,讀懂新概念,能靈活應(yīng)用新概念,結(jié)合圖形解題是關(guān)鍵.23、(1)詳見(jiàn)解析;(1)①詳見(jiàn)解析;②1;③.【解題分析】

(1)只要證明△BAE≌△CDE即可;(1)①利用(1)可知△EBC是等腰直角三角形,根據(jù)ASA即可證明;②構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問(wèn)題;③如圖3中,作EH⊥BG于H.設(shè)NG=m,則BG=1m,BN=EN=m,EB=m.利用面積法求出EH,根據(jù)三角函數(shù)的定義即可解決問(wèn)題.【題目詳解】(1)證明:如圖1中,∵四邊形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中點(diǎn),∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(1)①解:如圖1中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,設(shè)BM=CN=x,則BN=4-x,∴S△BMN=?x(4-x)=-(x-1)1+1,∵-<0,∴x=1時(shí),△BMN的面積最大,最大值為1.③解:如圖3中,作EH⊥BG于H.設(shè)NG=m,則BG=1m,BN=EN=m,EB=m.∴EG=m+m=(1+)m,∵S△BEG=?EG?BN=?BG?EH,∴EH==m,在Rt△EBH中,sin∠EBH=.【題目點(diǎn)撥】本題考查四邊形綜合題、矩形的性質(zhì)、等腰直角三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、旋轉(zhuǎn)變換、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是準(zhǔn)確尋找全等三角形解決問(wèn)題,學(xué)會(huì)添加常用輔助線,學(xué)會(huì)利用參數(shù)解決問(wèn)題,24、從甲班抽調(diào)了35人,從乙班抽調(diào)了1人【解題分析】分析:首先設(shè)從甲班抽調(diào)了x人,那么從乙班抽調(diào)了(x﹣1)人,根據(jù)題意列出一元一次方程,從而得出答案.詳解:設(shè)從甲班抽調(diào)了x人,那么從乙班抽調(diào)了(x﹣1)人,由題意得,45﹣x=2[39﹣(x﹣1)],解得

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論