2024屆山東省青島2中中考猜題數(shù)學(xué)試卷含解析_第1頁
2024屆山東省青島2中中考猜題數(shù)學(xué)試卷含解析_第2頁
2024屆山東省青島2中中考猜題數(shù)學(xué)試卷含解析_第3頁
2024屆山東省青島2中中考猜題數(shù)學(xué)試卷含解析_第4頁
2024屆山東省青島2中中考猜題數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆山東省青島2中中考猜題數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,在四邊形ABCD中,對(duì)角線AC⊥BD,垂足為O,點(diǎn)E、F、G、H分別為邊AD、AB、BC、CD的中點(diǎn).若AC=10,BD=6,則四邊形EFGH的面積為()A.20 B.15 C.30 D.602.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE等于()A.40° B.70° C.60° D.50°3.下列交通標(biāo)志是中心對(duì)稱圖形的為()A. B. C. D.4.如圖,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分別過點(diǎn)B,C作BE⊥AG于點(diǎn)E,CF⊥AG于點(diǎn)F,則AE-GF的值為()A.1 B.2 C.32 D.5.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點(diǎn)F,則的面積為()A.4 B.6 C.8 D.106.如圖,矩形ABCD中,E為DC的中點(diǎn),AD:AB=:2,CP:BP=1:2,連接EP并延長(zhǎng),交AB的延長(zhǎng)線于點(diǎn)F,AP、BE相交于點(diǎn)O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④7.由一些大小相同的小正方體組成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示在該位置上的小正方體的個(gè)數(shù),那么,這個(gè)幾何體的左視圖是()A. B. C. D.8.將直線y=﹣x+a的圖象向右平移2個(gè)單位后經(jīng)過點(diǎn)A(3,3),則a的值為()A.4B.﹣4C.2D.﹣29.定義:如果一元二次方程ax2+bx+c=0(a≠0)滿足a+b+c=0,那么我們稱這個(gè)方程為“和諧”方程;如果一元二次方程ax2+bx+c=0(a≠0)滿足a﹣b+c=0那么我們稱這個(gè)方程為“美好”方程,如果一個(gè)一元二次方程既是“和諧”方程又是“美好”方程,則下列結(jié)論正確的是()A.方有兩個(gè)相等的實(shí)數(shù)根 B.方程有一根等于0C.方程兩根之和等于0 D.方程兩根之積等于010.某種微生物半徑約為0.00000637米,該數(shù)字用科學(xué)記數(shù)法可表示為()A.0.637×10﹣5B.6.37×10﹣6C.63.7×10﹣7D.6.37×10﹣7二、填空題(共7小題,每小題3分,滿分21分)11.二次函數(shù)的圖象如圖,若一元二次方程有實(shí)數(shù)根,則的最大值為___12.函數(shù)的自變量的取值范圍是.13.若代數(shù)式的值不小于代數(shù)式的值,則x的取值范圍是_____.14.如圖,已知圓錐的底面⊙O的直徑BC=6,高OA=4,則該圓錐的側(cè)面展開圖的面積為.15.已知點(diǎn)P(3,1)關(guān)于y軸的對(duì)稱點(diǎn)Q的坐標(biāo)是(a+b,﹣1﹣b),則ab的值為_____.16.如圖,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分線MN交AC于點(diǎn)D,則∠A的度數(shù)是.17.如圖的三角形紙片中,,沿過點(diǎn)的直線折疊這個(gè)三角形,使點(diǎn)落在邊上的點(diǎn)處,折痕為,則的周長(zhǎng)為__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn)和,雙曲線經(jīng)過點(diǎn)B.(1)求直線和雙曲線的函數(shù)表達(dá)式;(2)點(diǎn)C從點(diǎn)A出發(fā),沿過點(diǎn)A與y軸平行的直線向下運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,點(diǎn)C的運(yùn)動(dòng)時(shí)間為t(0<t<12),連接BC,作BD⊥BC交x軸于點(diǎn)D,連接CD,①當(dāng)點(diǎn)C在雙曲線上時(shí),求t的值;②在0<t<6范圍內(nèi),∠BCD的大小如果發(fā)生變化,求tan∠BCD的變化范圍;如果不發(fā)生變化,求tan∠BCD的值;③當(dāng)時(shí),請(qǐng)直接寫出t的值.19.(5分)如圖,某校準(zhǔn)備給長(zhǎng)12米,寬8米的矩形室內(nèi)場(chǎng)地進(jìn)行地面裝飾,現(xiàn)將其劃分為區(qū)域Ⅰ(菱形),區(qū)域Ⅱ(4個(gè)全等的直角三角形),剩余空白部分記為區(qū)域Ⅲ;點(diǎn)為矩形和菱形的對(duì)稱中心,,,,為了美觀,要求區(qū)域Ⅱ的面積不超過矩形面積的,若設(shè)米.甲乙丙單價(jià)(元/米2)(1)當(dāng)時(shí),求區(qū)域Ⅱ的面積.計(jì)劃在區(qū)域Ⅰ,Ⅱ分別鋪設(shè)甲,乙兩款不同的深色瓷磚,區(qū)域Ⅲ鋪設(shè)丙款白色瓷磚,①在相同光照條件下,當(dāng)場(chǎng)地內(nèi)白色區(qū)域的面積越大,室內(nèi)光線亮度越好.當(dāng)為多少時(shí),室內(nèi)光線亮度最好,并求此時(shí)白色區(qū)域的面積.②三種瓷磚的單價(jià)列表如下,均為正整數(shù),若當(dāng)米時(shí),購買三款瓷磚的總費(fèi)用最少,且最少費(fèi)用為7200元,此時(shí)__________,__________.20.(8分)在平面直角坐標(biāo)系中,拋物線y=(x﹣h)2+k的對(duì)稱軸是直線x=1.若拋物線與x軸交于原點(diǎn),求k的值;當(dāng)﹣1<x<0時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn),求k的取值范圍.21.(10分)某家電銷售商場(chǎng)電冰箱的銷售價(jià)為每臺(tái)1600元,空調(diào)的銷售價(jià)為每臺(tái)1400元,每臺(tái)電冰箱的進(jìn)價(jià)比每臺(tái)空調(diào)的進(jìn)價(jià)多300元,商場(chǎng)用9000元購進(jìn)電冰箱的數(shù)量與用7200元購進(jìn)空調(diào)數(shù)量相等.(1)求每臺(tái)電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?(2)現(xiàn)在商場(chǎng)準(zhǔn)備一次購進(jìn)這兩種家電共100臺(tái),設(shè)購進(jìn)電冰箱x臺(tái),這100臺(tái)家電的銷售利潤(rùn)為Y元,要求購進(jìn)空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤(rùn)不低于16200元,請(qǐng)分析合理的方案共有多少種?(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)電冰箱出廠價(jià)下調(diào)K(0<K<150)元,若商場(chǎng)保持這兩種家電的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中條件,設(shè)計(jì)出使這100臺(tái)家電銷售總利潤(rùn)最大的進(jìn)貨方案.22.(10分)如圖,在中,,以邊為直徑作⊙交邊于點(diǎn),過點(diǎn)作于點(diǎn),、的延長(zhǎng)線交于點(diǎn).求證:是⊙的切線;若,且,求⊙的半徑與線段的長(zhǎng).23.(12分)如圖,在平行四邊形ABCD中,AD>AB.(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)若(1)中所作的角平分線交AD于點(diǎn)E,AF⊥BE,垂足為點(diǎn)O,交BC于點(diǎn)F,連接EF.求證:四邊形ABFE為菱形.24.(14分)某化工材料經(jīng)銷公司購進(jìn)一種化工材料若干千克,價(jià)格為每千克40元,物價(jià)部門規(guī)定其銷售單價(jià)不高于每千克70元,不低于每千克40元.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),日銷量y(千克)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=70時(shí),y=80;x=60時(shí),y=1.在銷售過程中,每天還要支付其他費(fèi)用350元.求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;求該公司銷售該原料日獲利w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;當(dāng)銷售單價(jià)為多少元時(shí),該公司日獲利最大?最大利潤(rùn)是多少元?

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解題分析】

有一個(gè)角是直角的平行四邊形是矩形.利用中位線定理可得出四邊形EFGH是矩形,根據(jù)矩形的面積公式解答即可.【題目詳解】∵點(diǎn)E、F分別為四邊形ABCD的邊AD、AB的中點(diǎn),∴EF∥BD,且EF=BD=1.同理求得EH∥AC∥GF,且EH=GF=AC=5,又∵AC⊥BD,∴EF∥GH,F(xiàn)G∥HE且EF⊥FG.四邊形EFGH是矩形.∴四邊形EFGH的面積=EF?EH=1×5=2,即四邊形EFGH的面積是2.故選B.【題目點(diǎn)撥】本題考查的是中點(diǎn)四邊形.解題時(shí),利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一個(gè)角是直角的平行四邊形是矩形;(2)有三個(gè)角是直角的四邊形是矩形;(1)對(duì)角線互相平分且相等的四邊形是矩形.2、D【解題分析】

根據(jù)線段垂直平分線性質(zhì)得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【題目詳解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故選D.【題目點(diǎn)撥】本題考查了等腰三角形的性質(zhì),線段垂直平分線性質(zhì)的應(yīng)用,注意:線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等.3、C【解題分析】

根據(jù)中心對(duì)稱圖形的定義即可解答.【題目詳解】解:A、屬于軸對(duì)稱圖形,不是中心對(duì)稱的圖形,不合題意;

B、是中心對(duì)稱的圖形,但不是交通標(biāo)志,不符合題意;

C、屬于軸對(duì)稱圖形,屬于中心對(duì)稱的圖形,符合題意;

D、不是中心對(duì)稱的圖形,不合題意.

故選C.【題目點(diǎn)撥】本題考查中心對(duì)稱圖形的定義:繞對(duì)稱中心旋轉(zhuǎn)180度后所得的圖形與原圖形完全重合.4、D【解題分析】

設(shè)AE=x,則AB=2x,由矩形的性質(zhì)得出∠BAD=∠D=90°,CD=AB,證明△ADG是等腰直角三角形,得出AG=2AD=2,同理得出CD=AB=2x,CG=CD-DG=2x-1,CG=2GF,得出GF,即可得出結(jié)果.【題目詳解】設(shè)AE=x,

∵四邊形ABCD是矩形,

∴∠BAD=∠D=90°,CD=AB,∵AG平分∠BAD,∴∠DAG=45°,∴△ADG是等腰直角三角形,∴DG=AD=1,∴AG=2AD=2,同理:BE=AE=x,CD=AB=2x,∴CG=CD-DG=2x-1,同理:CG=2GF,∴FG=22∴AE-GF=x-(x-22)=2故選D.【題目點(diǎn)撥】本題考查了矩形的性質(zhì)、等腰直角三角形的判定與性質(zhì),勾股定理;熟練掌握矩形的性質(zhì)和等腰直角三角形的性質(zhì),并能進(jìn)行推理計(jì)算是解決問題的關(guān)鍵.5、C【解題分析】

根據(jù)折疊易得BD,AB長(zhǎng),利用相似可得BF長(zhǎng),也就求得了CF的長(zhǎng)度,△CEF的面積=CF?CE.【題目詳解】解:由折疊的性質(zhì)知,第二個(gè)圖中BD=AB-AD=4,第三個(gè)圖中AB=AD-BD=2,

因?yàn)锽C∥DE,

所以BF:DE=AB:AD,

所以BF=2,CF=BC-BF=4,

所以△CEF的面積=CF?CE=8;

故選:C.點(diǎn)睛:

本題利用了:①折疊的性質(zhì):折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等;②矩形的性質(zhì),平行線的性質(zhì),三角形的面積公式等知識(shí)點(diǎn).6、B【解題分析】

由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運(yùn)用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【題目詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點(diǎn),∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點(diǎn)E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯(cuò)誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【題目點(diǎn)撥】本題考查了矩形的性質(zhì)的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,特殊角的正切值的運(yùn)用,勾股定理的運(yùn)用及直角三角形的性質(zhì)的運(yùn)用,解答時(shí)根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長(zhǎng)度是關(guān)鍵.7、A【解題分析】從左面看,得到左邊2個(gè)正方形,中間3個(gè)正方形,右邊1個(gè)正方形.故選A.8、A【解題分析】

直接根據(jù)“左加右減”的原則求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【題目詳解】由“右加左減”的原則可知,將直線y=-x+b向右平移2個(gè)單位所得直線的解析式為:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故選A.【題目點(diǎn)撥】本題考查了一次函數(shù)圖象的平移,一次函數(shù)圖象的平移規(guī)律是:①y=kx+b向左平移m個(gè)單位,是y=k(x+m)+b,向右平移m個(gè)單位是y=k(x-m)+b,即左右平移時(shí),自變量x左加右減;②y=kx+b向上平移n個(gè)單位,是y=kx+b+n,向下平移n個(gè)單位是y=kx+b-n,即上下平移時(shí),b的值上加下減.9、C【解題分析】試題分析:根據(jù)已知得出方程ax2+bx+c=0(a≠0)有兩個(gè)根x=1和x=﹣1,再判斷即可.解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,∴方程ax2+bx+c=0(a≠0)有兩個(gè)根x=1和x=﹣1,∴1+(﹣1)=0,即只有選項(xiàng)C正確;選項(xiàng)A、B、D都錯(cuò)誤;故選C.10、B【解題分析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【題目詳解】0.00000637的小數(shù)點(diǎn)向右移動(dòng)6位得到6.37所以0.00000637用科學(xué)記數(shù)法表示為6.37×10﹣6,故選B.【題目點(diǎn)撥】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.二、填空題(共7小題,每小題3分,滿分21分)11、3【解題分析】試題解析::∵拋物線的開口向上,頂點(diǎn)縱坐標(biāo)為-3,∴a>1.-=-3,即b2=12a,∵一元二次方程ax2+bx+m=1有實(shí)數(shù)根,∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,∴m的最大值為3,12、x≠1【解題分析】該題考查分式方程的有關(guān)概念根據(jù)分式的分母不為0可得X-1≠0,即x≠1那么函數(shù)y=的自變量的取值范圍是x≠113、x≥【解題分析】

根據(jù)題意列出不等式,依據(jù)解不等式得基本步驟求解可得.【題目詳解】解:根據(jù)題意,得:,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥,故答案為x≥.【題目點(diǎn)撥】本題主要考查解不等式得基本技能,熟練掌握解一元一次不等式的基本步驟是解題的關(guān)鍵.14、15π.【解題分析】試題分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,側(cè)面展開圖的面積為:×6π×5=15π.故答案為15π.考點(diǎn):圓錐的計(jì)算.15、2【解題分析】

根據(jù)“關(guān)于y軸對(duì)稱的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)”求出ab的值即可.【題目詳解】∵點(diǎn)P(3,1)關(guān)于y軸的對(duì)稱點(diǎn)Q的坐標(biāo)是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案為2.【題目點(diǎn)撥】本題考查了關(guān)于x軸,y軸對(duì)稱的點(diǎn)的坐標(biāo),解題的關(guān)鍵是熟練的掌握關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)的性質(zhì).16、50°.【解題分析】

根據(jù)線段垂直平分線上的點(diǎn)到兩端點(diǎn)的距離相等可得AD=BD,根據(jù)等邊對(duì)等角可得∠A=∠ABD,然后表示出∠ABC,再根據(jù)等腰三角形兩底角相等可得∠C=∠ABC,然后根據(jù)三角形的內(nèi)角和定理列出方程求解即可:【題目詳解】∵M(jìn)N是AB的垂直平分線,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案為50°.17、【解題分析】

由折疊的性質(zhì),可知:BE=BC,DE=DC,通過等量代換,即可得到答案.【題目詳解】∵沿過點(diǎn)的直線折疊這個(gè)三角形,使點(diǎn)落在邊上的點(diǎn)處,折痕為,∴BE=BC,DE=DC,∴的周長(zhǎng)=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm,故答案是:【題目點(diǎn)撥】本題主要考查折疊的性質(zhì),根據(jù)三角形的周長(zhǎng)定義,進(jìn)行等量代換是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)直線的表達(dá)式為,雙曲線的表達(dá)式為;(2)①;②當(dāng)時(shí),的大小不發(fā)生變化,的值為;③t的值為或.【解題分析】

(1)由點(diǎn)利用待定系數(shù)法可求出直線的表達(dá)式;再由直線的表達(dá)式求出點(diǎn)B的坐標(biāo),然后利用待定系數(shù)法即可求出雙曲線的表達(dá)式;(2)①先求出點(diǎn)C的橫坐標(biāo),再將其代入雙曲線的表達(dá)式求出點(diǎn)C的縱坐標(biāo),從而即可得出t的值;②如圖1(見解析),設(shè)直線AB交y軸于M,則,取CD的中點(diǎn)K,連接AK、BK.利用直角三角形的性質(zhì)證明A、D、B、C四點(diǎn)共圓,再根據(jù)圓周角定理可得,從而得出,即可解決問題;③如圖2(見解析),過點(diǎn)B作于M,先求出點(diǎn)D與點(diǎn)M重合的臨界位置時(shí)t的值,據(jù)此分和兩種情況討論:根據(jù)三點(diǎn)坐標(biāo)求出的長(zhǎng),再利用三角形相似的判定定理與性質(zhì)求出DM的長(zhǎng),最后在中,利用勾股定理即可得出答案.【題目詳解】(1)∵直線經(jīng)過點(diǎn)和∴將點(diǎn)代入得解得故直線的表達(dá)式為將點(diǎn)代入直線的表達(dá)式得解得∵雙曲線經(jīng)過點(diǎn),解得故雙曲線的表達(dá)式為;(2)①軸,點(diǎn)A的坐標(biāo)為∴點(diǎn)C的橫坐標(biāo)為12將其代入雙曲線的表達(dá)式得∴C的縱坐標(biāo)為,即由題意得,解得故當(dāng)點(diǎn)C在雙曲線上時(shí),t的值為;②當(dāng)時(shí),的大小不發(fā)生變化,求解過程如下:若點(diǎn)D與點(diǎn)A重合由題意知,點(diǎn)C坐標(biāo)為由兩點(diǎn)距離公式得:由勾股定理得,即解得因此,在范圍內(nèi),點(diǎn)D與點(diǎn)A不重合,且在點(diǎn)A左側(cè)如圖1,設(shè)直線AB交y軸于M,取CD的中點(diǎn)K,連接AK、BK由(1)知,直線AB的表達(dá)式為令得,則,即點(diǎn)K為CD的中點(diǎn),(直角三角形中,斜邊上的中線等于斜邊的一半)同理可得:A、D、B、C四點(diǎn)共圓,點(diǎn)K為圓心(圓周角定理);③過點(diǎn)B作于M由題意和②可知,點(diǎn)D在點(diǎn)A左側(cè),與點(diǎn)M重合是一個(gè)臨界位置此時(shí),四邊形ACBD是矩形,則,即因此,分以下2種情況討論:如圖2,當(dāng)時(shí),過點(diǎn)C作于N又,即由勾股定理得即解得或(不符題設(shè),舍去)當(dāng)時(shí),同理可得:解得或(不符題設(shè),舍去)綜上所述,t的值為或.【題目點(diǎn)撥】本題考查反比例函數(shù)綜合題、銳角三角函數(shù)、相似三角形的判定和性質(zhì)、四點(diǎn)共圓、勾股定理等知識(shí)點(diǎn),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造相似三角形解決問題.19、(1)8m2;(2)68m2;(3)40,8【解題分析】

(1)根據(jù)中心對(duì)稱圖形性質(zhì)和,,,可得,即可解當(dāng)時(shí),4個(gè)全等直角三角形的面積;(2)白色區(qū)域面積即是矩形面積減去一二部分的面積,分別用含x的代數(shù)式表示出菱形和四個(gè)全等直角三角形的面積,列出含有x的解析式表示白色區(qū)域面積,并化成頂點(diǎn)式,根據(jù),,,求出自變量的取值范圍,再根據(jù)二次函數(shù)的增減性即可解答;(3)計(jì)算出x=2時(shí)各部分面積以及用含m、n的代數(shù)式表示出費(fèi)用,因?yàn)閙,n均為正整數(shù),解得m=40,n=8.【題目詳解】(1)∵為長(zhǎng)方形和菱形的對(duì)稱中心,,∴∵,,∴∴當(dāng)時(shí),,(2)∵,∴-,∵,,∴解不等式組得,∵,結(jié)合圖像,當(dāng)時(shí),隨的增大而減小.∴當(dāng)時(shí),取得最大值為(3)∵當(dāng)時(shí),SⅠ=4x2=16m2,=12m2,=68m2,總費(fèi)用:16×2m+12×5n+68×2m=7200,化簡(jiǎn)得:5n+14m=600,因?yàn)閙,n均為正整數(shù),解得m=40,n=8.【題目點(diǎn)撥】本題考查中心對(duì)稱圖形性質(zhì),菱形、直角三角形的面積計(jì)算,二次函數(shù)的最值問題,解題關(guān)鍵是用含x的二次函數(shù)解析式表示出白色區(qū)面積.20、(1)k=﹣1;(2)當(dāng)﹣4<k<﹣1時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn).【解題分析】

(1)由拋物線的對(duì)稱軸直線可得h,然后再由拋物線交于原點(diǎn)代入求出k即可;(2)先根據(jù)拋物線與x軸有公共點(diǎn)求出k的取值范圍,然后再根據(jù)拋物線的對(duì)稱軸及當(dāng)﹣1<x<2時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn),進(jìn)一步求出k的取值范圍即可.【題目詳解】解:(1)∵拋物線y=(x﹣h)2+k的對(duì)稱軸是直線x=1,∴h=1,把原點(diǎn)坐標(biāo)代入y=(x﹣1)2+k,得,(2﹣1)2+k=2,解得k=﹣1;(2)∵拋物線y=(x﹣1)2+k與x軸有公共點(diǎn),∴對(duì)于方程(x﹣1)2+k=2,判別式b2﹣4ac=﹣4k≥2,∴k≤2.當(dāng)x=﹣1時(shí),y=4+k;當(dāng)x=2時(shí),y=1+k,∵拋物線的對(duì)稱軸為x=1,且當(dāng)﹣1<x<2時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn),∴4+k>2且1+k<2,解得﹣4<k<﹣1,綜上,當(dāng)﹣4<k<﹣1時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn).【題目點(diǎn)撥】拋物線與一元二次方程的綜合是本題的考點(diǎn),熟練掌握拋物線的性質(zhì)是解題的關(guān)鍵.21、(1)每臺(tái)空調(diào)的進(jìn)價(jià)為1200元,每臺(tái)電冰箱的進(jìn)價(jià)為1500元;(2)共有5種方案;(3)當(dāng)100<k<150時(shí),購進(jìn)電冰箱38臺(tái),空調(diào)62臺(tái),總利潤(rùn)最大;當(dāng)0<k<100時(shí),購進(jìn)電冰箱34臺(tái),空調(diào)66臺(tái),總利潤(rùn)最大,當(dāng)k=100時(shí),無論采取哪種方案,y1恒為20000元.【解題分析】

(1)用“用9000元購進(jìn)電冰箱的數(shù)量與用7200元購進(jìn)空調(diào)數(shù)量相等”建立方程即可;(2)建立不等式組求出x的范圍,代入即可得出結(jié)論;(3)建立y1=(k﹣100)x+20000,分三種情況討論即可.【題目詳解】(1)設(shè)每臺(tái)空調(diào)的進(jìn)價(jià)為m元,則每臺(tái)電冰箱的進(jìn)價(jià)(m+300)元,由題意得,,∴m=1200,經(jīng)檢驗(yàn),m=1200是原分式方程的解,也符合題意,∴m+300=1500元,答:每臺(tái)空調(diào)的進(jìn)價(jià)為1200元,每臺(tái)電冰箱的進(jìn)價(jià)為1500元;(2)由題意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,∵,∴33≤x≤38,∵x為正整數(shù),∴x=34,35,36,37,38,即:共有5種方案;(3)設(shè)廠家對(duì)電冰箱出廠價(jià)下調(diào)k(0<k<150)元后,這100臺(tái)家電的銷售總利潤(rùn)為y1元,∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,當(dāng)100<k<150時(shí),y1隨x的最大而增大,∴x=38時(shí),y1取得最大值,即:購進(jìn)電冰箱38臺(tái),空調(diào)62臺(tái),總利潤(rùn)最大,當(dāng)0<k<100時(shí),y1隨x的最大而減小,∴x=34時(shí),y1取得最大值,即:購進(jìn)電冰箱34臺(tái),空調(diào)66臺(tái),總利潤(rùn)最大,當(dāng)k=100時(shí),無論采取哪種方案,y1恒為20000元.【題目點(diǎn)撥】本題考查了一次函數(shù)的應(yīng)用,分式方程的應(yīng)用,不等式組的應(yīng)用,根據(jù)題意找出等量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論