2024屆安徽合肥包河區(qū)四十八中學中考數(shù)學模擬預測題含解析_第1頁
2024屆安徽合肥包河區(qū)四十八中學中考數(shù)學模擬預測題含解析_第2頁
2024屆安徽合肥包河區(qū)四十八中學中考數(shù)學模擬預測題含解析_第3頁
2024屆安徽合肥包河區(qū)四十八中學中考數(shù)學模擬預測題含解析_第4頁
2024屆安徽合肥包河區(qū)四十八中學中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆安徽合肥包河區(qū)四十八中學中考數(shù)學模擬預測題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x﹣k)2+h.已知球與D點的水平距離為6m時,達到最高2.6m,球網(wǎng)與D點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是()A.球不會過網(wǎng) B.球會過球網(wǎng)但不會出界C.球會過球網(wǎng)并會出界 D.無法確定2.分式方程的解為()A.x=-2 B.x=-3 C.x=2 D.x=33.以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實數(shù)b的取值范圍是()A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤24.-10-4的結(jié)果是()A.-7B.7C.-14D.135.點P(4,﹣3)關(guān)于原點對稱的點所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限6.如圖,三棱柱ABC﹣A1B1C1的側(cè)棱長和底面邊長均為2,且側(cè)棱AA1⊥底面ABC,其正(主)視圖是邊長為2的正方形,則此三棱柱側(cè)(左)視圖的面積為()A. B. C. D.47.下列各數(shù)3.1415926,,,,,中,無理數(shù)有()A.2個 B.3個 C.4個 D.5個8.如圖是由5個相同的正方體搭成的幾何體,其左視圖是()A. B.C. D.9.1cm2的電子屏上約有細菌135000個,135000用科學記數(shù)法表示為()A.0.135×106 B.1.35×105 C.13.5×104 D.135×10310.如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是A.55° B.60° C.65° D.70°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標系中,已知點A(1,1),以點O為旋轉(zhuǎn)中心,將點A逆時針旋轉(zhuǎn)到點B的位置,則的長為_____.12.唐老師為了了解學生的期末數(shù)學成績,在班級隨機抽查了10名學生的成績,其統(tǒng)計數(shù)據(jù)如下表:分數(shù)(單位:分)10090807060人數(shù)14212則這10名學生的數(shù)學成績的中位數(shù)是_____分.13.如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________.14.如圖,在正五邊形ABCDE中,AC與BE相交于點F,則∠AFE的度數(shù)為_____.15.如圖,在梯形中,,E、F分別是邊的中點,設,那么等于__________(結(jié)果用的線性組合表示).16.若實數(shù)m、n在數(shù)軸上的位置如圖所示,則(m+n)(m-n)________0,(填“>”、“<”或“=”)17.化簡:=.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:,其中x是從-1、0、1、2中選取一個合適的數(shù).19.(5分)“低碳生活,綠色出行”是我們倡導的一種生活方式,有關(guān)部門抽樣調(diào)查了某單位員工上下班的交通方式,繪制了兩幅統(tǒng)計圖:(1)樣本中的總?cè)藬?shù)為人;扇形統(tǒng)計十圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統(tǒng)計圖;(3)該單位共有1000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?20.(8分)如圖①,在正方形ABCD中,點E與點F分別在線段AC、BC上,且四邊形DEFG是正方形.(1)試探究線段AE與CG的關(guān)系,并說明理由.(2)如圖②若將條件中的四邊形ABCD與四邊形DEFG由正方形改為矩形,AB=3,BC=1.①線段AE、CG在(1)中的關(guān)系仍然成立嗎?若成立,請證明,若不成立,請寫出你認為正確的關(guān)系,并說明理由.②當△CDE為等腰三角形時,求CG的長.21.(10分)如圖,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圓⊙O上的一動點(點P與點C位于直線AB的異側(cè))連接AP、BP,延長AP到D,使PD=PB,連接BD.(1)求證:PC∥BD;(2)若⊙O的半徑為2,∠ABP=60°,求CP的長;(3)隨著點P的運動,的值是否會發(fā)生變化,若變化,請說明理由;若不變,請給出證明.22.(10分)如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數(shù)y=(x>0)的圖象經(jīng)過AO的中點C,交AB于點D,且AD=1.設點A的坐標為(4,4)則點C的坐標為;若點D的坐標為(4,n).①求反比例函數(shù)y=的表達式;②求經(jīng)過C,D兩點的直線所對應的函數(shù)解析式;在(2)的條件下,設點E是線段CD上的動點(不與點C,D重合),過點E且平行y軸的直線l與反比例函數(shù)的圖象交于點F,求△OEF面積的最大值.23.(12分)為落實“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標一工程隊負責在山腳下修建一座水庫的土方施工任務.該工程隊有兩種型號的挖掘機,已知3臺型和5臺型挖掘機同時施工一小時挖土165立方米;4臺型和7臺型挖掘機同時施工一小時挖土225立方米.每臺型挖掘機一小時的施工費用為300元,每臺型挖掘機一小時的施工費用為180元.分別求每臺型,型挖掘機一小時挖土多少立方米?若不同數(shù)量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費用最低,最低費用是多少元?24.(14分)如圖,在△ABC中,AD=15,AC=12,DC=9,點B是CD延長線上一點,連接AB,若AB=1.求:△ABD的面積.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】分析:(1)將點A(0,2)代入求出a的值;分別求出x=9和x=18時的函數(shù)值,再分別與2.43、0比較大小可得.詳解:根據(jù)題意,將點A(0,2)代入得:36a+2.6=2,解得:∴y與x的關(guān)系式為當x=9時,∴球能過球網(wǎng),當x=18時,∴球會出界.故選C.點睛:考查二次函數(shù)的應用題,求范圍的問題,可以利用臨界點法求出自變量的值,根據(jù)題意確定范圍.2、B【解題分析】解:去分母得:2x=x﹣3,解得:x=﹣3,經(jīng)檢驗x=﹣3是分式方程的解.故選B.3、A【解題分析】∵二次函數(shù)y=x2-2(b-2)x+b2-1的圖象不經(jīng)過第三象限,a=1>0,∴Δ≤0或拋物線與x軸的交點的橫坐標均大于等于0.當Δ≤0時,[-2(b-2)]2-4(b2-1)≤0,解得b≥.當拋物線與x軸的交點的橫坐標均大于等于0時,設拋物線與x軸的交點的橫坐標分別為x1,x2,則x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,無解,∴此種情況不存在.∴b≥.4、C【解題分析】解:-10-4=-1.故選C.5、C【解題分析】

由題意得點P的坐標為(﹣4,3),根據(jù)象限內(nèi)點的符號特點可得點P1的所在象限.【題目詳解】∵設P(4,﹣3)關(guān)于原點的對稱點是點P1,∴點P1的坐標為(﹣4,3),∴點P1在第二象限.故選C【題目點撥】本題主要考查了兩點關(guān)于原點對稱,這兩點的橫縱坐標均互為相反數(shù);符號為(﹣,+)的點在第二象限.6、B【解題分析】分析:易得等邊三角形的高,那么左視圖的面積=等邊三角形的高×側(cè)棱長,把相關(guān)數(shù)值代入即可求解.詳解:∵三棱柱的底面為等邊三角形,邊長為2,作出等邊三角形的高CD后,∴等邊三角形的高CD=,∴側(cè)(左)視圖的面積為2×,故選B.點睛:本題主要考查的是由三視圖判斷幾何體.解決本題的關(guān)鍵是得到求左視圖的面積的等量關(guān)系,難點是得到側(cè)面積的寬度.7、B【解題分析】

根據(jù)無理數(shù)的定義即可判定求解.【題目詳解】在3.1415926,,,,,中,,3.1415926,是有理數(shù),,,是無理數(shù),共有3個,故選:B.【題目點撥】本題主要考查了無理數(shù)的定義,其中初中范圍內(nèi)學習的無理數(shù)有:等;開方開不盡的數(shù);以及像0.1010010001…,等有這樣規(guī)律的數(shù).8、A【解題分析】

根據(jù)三視圖的定義即可判斷.【題目詳解】根據(jù)立體圖可知該左視圖是底層有2個小正方形,第二層左邊有1個小正方形.故選A.【題目點撥】本題考查三視圖,解題的關(guān)鍵是根據(jù)立體圖的形狀作出三視圖,本題屬于基礎(chǔ)題型.9、B【解題分析】

根據(jù)科學記數(shù)法的表示形式(a×10n的形式,其中1≤|a|<10,n為整數(shù),確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同;當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù)).【題目詳解】解:135000用科學記數(shù)法表示為:1.35×1.故選B.【題目點撥】科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.10、C【解題分析】

根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答即可.【題目詳解】∵將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵點A,D,E在同一條直線上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故選C.【題目點撥】此題考查旋轉(zhuǎn)的性質(zhì),關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答.二、填空題(共7小題,每小題3分,滿分21分)11、.【解題分析】

由點A(1,1),可得OA的長,點A在第一象限的角平分線上,可得∠AOB=45°,,再根據(jù)弧長公式計算即可.【題目詳解】∵A(1,1),∴OA=,點A在第一象限的角平分線上,∵以點O為旋轉(zhuǎn)中心,將點A逆時針旋轉(zhuǎn)到點B的位置,∴∠AOB=45°,∴的長為=,故答案為:.【題目點撥】本題考查坐標與圖形變化——旋轉(zhuǎn),弧長公式,熟練掌握旋轉(zhuǎn)的性質(zhì)以及弧長公式是解題的關(guān)鍵.本題中求出OA=以及∠AOB=45°也是解題的關(guān)鍵.12、1【解題分析】

根據(jù)中位數(shù)的概念求解即可.【題目詳解】這組數(shù)據(jù)按照從小到大的順序排列為:60,60,70,80,80,90,90,90,90,100,則中位數(shù)為:=1.故答案為:1.【題目點撥】本題考查了中位數(shù)的概念:將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).13、(1,0)【解題分析】分析:由于C、D是定點,則CD是定值,如果的周長最小,即有最小值.為此,作點D關(guān)于x軸的對稱點D′,當點E在線段CD′上時的周長最?。斀猓喝鐖D,作點D關(guān)于x軸的對稱點D′,連接CD′與x軸交于點E,連接DE.若在邊OA上任取點E′與點E不重合,連接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周長最小,∵在矩形OACB中,OA=3,OB=4,D為OB的中點,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴點E的坐標為(1,0).故答案為:(1,0).點睛:考查軸對稱-最短路線問題,坐標與圖形性質(zhì),相似三角形的判定與性質(zhì)等,找出點E的位置是解題的關(guān)鍵.14、72°【解題分析】

首先根據(jù)正五邊形的性質(zhì)得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內(nèi)角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質(zhì)得到∠AFE=∠BAC+∠ABE=72°.【題目詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【題目點撥】本題考查的是正多邊形和圓,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵15、.【解題分析】

作AH∥EF交BC于H,首先證明四邊形EFHA是平行四邊形,再利用三角形法則計算即可.【題目詳解】作AH∥EF交BC于H.∵AE∥FH,∴四邊形EFHA是平行四邊形,∴AE=HF,AH=EF.∵AE=ED=HF,∴.∵BC=2AD,∴2.∵BF=FC,∴,∴.∵.故答案為:.【題目點撥】本題考查了平面向量,解題的關(guān)鍵是熟練掌握三角形法則,屬于中考??碱}型.16、>【解題分析】

根據(jù)數(shù)軸可以確定m、n的大小關(guān)系,根據(jù)加法以及減法的法則確定m+n以及m?n的符號,可得結(jié)果.【題目詳解】解:根據(jù)題意得:m<1<n,且|m|>|n|,∴m+n<1,m?n<1,∴(m+n)(m?n)>1.故答案為>.【題目點撥】本題考查了整式的加減和數(shù)軸,熟練掌握運算法則是解題的關(guān)鍵.17、2【解題分析】

根據(jù)算術(shù)平方根的定義,求數(shù)a的算術(shù)平方根,也就是求一個正數(shù)x,使得x2=a,則x就是a的算術(shù)平方根,特別地,規(guī)定0的算術(shù)平方根是0.【題目詳解】∵22=4,∴=2.【題目點撥】本題考查求算術(shù)平方根,熟記定義是關(guān)鍵.三、解答題(共7小題,滿分69分)18、.【解題分析】

先把分子分母因式分解,約分后進行通分化為同分母,再進行同分母的加法運算,然后再約分得到原式=,由于x不能取±1,2,所以把x=0代入計算即可.【題目詳解】,====,當x=0時,原式=.19、(1)80、72;(2)16人;(3)50人【解題分析】

(1)用步行人數(shù)除以其所占的百分比即可得到樣本總?cè)藬?shù):810%=80(人);用總?cè)藬?shù)乘以開私家車的所占百分比即可求出m,即m=8025%=20;用3600乘以騎自行車所占的百分比即可求出其所在扇形的圓心角:360(1-10%-25%-45%)=.(2)根據(jù)扇形統(tǒng)計圖算出騎自行車的所占百分比,再用總?cè)藬?shù)乘以該百分比即可求出騎自行車的人數(shù),補全條形圖即可.(3)依題意設原來開私家車的人中有x人改為騎自行車,用x分別表示改變出行方式后的騎自行車和開私家車的人數(shù),根據(jù)題意列出一元一次不等式,解不等式即可.【題目詳解】解:(1)樣本中的總?cè)藬?shù)為8÷10%=80人,∵騎自行車的百分比為1﹣(10%+25%+45%)=20%,∴扇形統(tǒng)計十圖中“騎自行車”所在扇形的圓心角為360°×20%=72°(2)騎自行車的人數(shù)為80×20%=16人,補全圖形如下:(3)設原來開私家車的人中有x人改騎自行車,由題意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,解得:x≥50,∴原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù).【題目點撥】本題主要考查統(tǒng)計圖表和一元一次不等式的應用。20、(1)AE=CG,AE⊥CG,理由見解析;(2)①位置關(guān)系保持不變,數(shù)量關(guān)系變?yōu)椋焕碛梢娊馕觯虎诋敗鰿DE為等腰三角形時,CG的長為或或.【解題分析】試題分析:證明≌即可得出結(jié)論.①位置關(guān)系保持不變,數(shù)量關(guān)系變?yōu)樽C明根據(jù)相似的性質(zhì)即可得出.分成三種情況討論即可.試題解析:(1)理由是:如圖1,∵四邊形EFGD是正方形,∴∵四邊形ABCD是正方形,∴∴∴≌∴∵∴∴即(2)①位置關(guān)系保持不變,數(shù)量關(guān)系變?yōu)槔碛墒牵喝鐖D2,連接EG、DF交于點O,連接OC,∵四邊形EFGD是矩形,∴Rt中,OG=OF,Rt中,∴∴D、E、F、C、G在以點O為圓心的圓上,∵∴DF為的直徑,∵∴EG也是的直徑,∴∠ECG=90°,即∴∵∴∵∴∴②由①知:∴設分三種情況:(i)當時,如圖3,過E作于H,則EH∥AD,∴∴由勾股定理得:∴(ii)當時,如圖1,過D作于H,∵∴∴∴∴∴(iii)當時,如圖5,∴∴綜上所述,當為等腰三角形時,CG的長為或或.點睛:兩組角對應,兩三角形相似.21、(1)證明見解析;(2)+;(3)的值不變,.【解題分析】

(1)根據(jù)等腰三角形的性質(zhì)得到∠ABC=45°,∠ACB=90°,根據(jù)圓周角定理得到∠APB=90°,得到∠APC=∠D,根據(jù)平行線的判定定理證明;(2)作BH⊥CP,根據(jù)正弦、余弦的定義分別求出CH、PH,計算即可;(3)證明△CBP∽△ABD,根據(jù)相似三角形的性質(zhì)解答.【題目詳解】(1)證明:∵△ABC是等腰直角三角形,且AC=BC,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB為⊙O的直徑,∴∠APB=90°,∵PD=PB,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC∥BD;(2)作BH⊥CP,垂足為H,∵⊙O的半徑為2,∠ABP=60°,∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt△BCH中,CH=BC?cos∠BCH=,BH=BC?sin∠BCH=,在Rt△BHP中,PH=BH=,∴CP=CH+PH=+;(3)的值不變,∵∠BCP=∠BAP,∠CPB=∠D,∴△CBP∽△ABD,∴=,∴=,即=.【題目點撥】本題考查的是圓周角定理、相似三角形的判定和性質(zhì)以及銳角三角函數(shù)的概念,掌握圓周角定理、相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.22、(1)C(2,2);(2)①反比例函數(shù)解析式為y=;②直線CD的解析式為y=﹣x+1;(1)m=1時,S△OEF最大,最大值為.【解題分析】

(1)利用中點坐標公式即可得出結(jié)論;

(2)①先確定出點A坐標,進而得出點C坐標,將點C,D坐標代入反比例函數(shù)中即可得出結(jié)論;

②由n=1,求出點C,D坐標,利用待定系數(shù)法即可得出結(jié)論;

(1)設出點E坐標,進而表示出點F坐標,即可建立面積與m的函數(shù)關(guān)系式即可得出結(jié)論.【題目詳解】(1)∵點C是OA的中點,A(4,4),O(0,0),∴C,∴C(2,2);故答案為(2,2);(2)①∵AD=1,D(4,n),∴A(4,n+1),∵點C是OA的中點,∴C(2,),∵點C,D(4,n)在雙曲線上,∴,∴,∴反比例函數(shù)解析式為;②由①知,n=1,∴C(2,2),D(4,1),設直線CD的解析式為y=ax+b,∴,∴,∴直線CD的解析式為y=﹣x+1;(1)如圖,由(2)知,直線CD的解析式為y=﹣x+1,設點E(m,﹣m+1),由(2)知,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論