簡諧運動的回復力和能量_第1頁
簡諧運動的回復力和能量_第2頁
簡諧運動的回復力和能量_第3頁
簡諧運動的回復力和能量_第4頁
簡諧運動的回復力和能量_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

PAGEPAGE4簡諧運動的回復力和能量學習目標:1.掌握簡諧運動回復力的特征。2.對水平的彈簧振子,能定量地說明彈性勢能與動能的轉化。學習過程:一、簡諧運動的回復力OABOABFF當把彈簧振子從它靜止的位置O拉開一小段距離到A再放開后,它會在A-O-B之間振動。為什么會振動?物體做機械振動時,一定受到指向中心位置的力,這個力的作用總能使物體回到中心位置,我們把這個力叫做簡諧運動的回復力。1、定義:受到總能使振動物體回到平衡位置,且始終指向平衡位置的力2、方向:始終指向平衡位置3、特點:回復力是根據(jù)力的效果命名的,不是什么新的性質的力,4、來源:振動方向的合力,可以是重力,彈力,摩擦力,還可以是幾個力的合力或某個力的分力,對于水平方向的彈簧振子,回復力就是彈簧的彈力。振子由于慣性而離開平衡位置,當振子離開平衡位置后,振子所受的回復力總是使振子回到平衡位置,這樣不斷地進行下去就形成了振動。振動的平衡位置O也可以說成是振動物體振動時受到的回復力為零的位置。5.回復力與位移關系彈簧振子的位移總是相對于平衡位置而言的,即初位置是平衡位置,位移可以用振子的位置坐標x來表示,方向始終從平衡位置指向振子(外側)?;貜土Φ姆较蚴冀K指向平衡位置,因而回復力的方向與振子的位移方向始終相反。對于水平方向的彈簧振子,回復力就是彈簧的彈力。在彈簧發(fā)生彈性形變時,彈簧振子的回復力F跟振子偏離平衡位置的位移x成正比,方向跟位移的方向總是相反。二、簡諧運動的動力學特征:F=-kx式中F為回復力,x為偏離平衡位置的位移,k是勁度系數(shù),負號表示回復力與位移的方向總相反。大量理論研究表明:如果質點所受的力與它偏離平衡位置的位移大小成正比,并且總指向平衡位置,質點的運動就是簡諧運動。做簡諧運動的質點,回復力總滿足F=-kx的形式。式中k是比例常數(shù)。這就是簡諧運動的動力學特征。這也是判斷物體是否做簡諧運動的方法?,F(xiàn)在用第以上方法來判斷豎直的彈簧拉一個小球的振動是不是簡諧運動?先找平衡位置。因為x為振子到平衡位置的位移。規(guī)定向下為正方向平衡位置:振子在C點受到的彈力為:振子受的回復力回復力與位移的關系符合簡諧運動的定義,所以是簡諧運動。此時彈簧振子的回復力還是不是彈簧的彈力?不是,是重力和彈力的合力。所以說:回復力不一定是彈力,可能是幾個力的合力。三、簡諧運動的能量1.簡諧運動系統(tǒng)的動能和勢能相互轉化,機械能守恒彈簧振子因不考慮各種阻力,只有彈簧彈力做功,因而振動系統(tǒng)的總機械能守恒。2.相關物理量的變化情況分析:振動具有周期性和重復性,在振動過程中,振子從A→O→B→O→A的一個循環(huán),這一循環(huán)可分為四個階段:A→O、O→B、B→O、O→A,分析在這四個階段中上述各物理量的變化,并將定性分析的結論填入表格中。位移、回復力、加速度、速度、動能、勢能和總能量的變化規(guī)律振子的運動A→OO→BB→OO→A對O點位移的方向怎樣?大小如何變化?向右減小向左增大向左減小向右增大回復力的方向怎樣?大小如何變化?向左減小向右增大向右減小向左增大加速度的方向怎樣?大小如何變化?向左減小向右增大向右減小向左增大速度的方向怎樣?大小如何變化?向左增大向左減小向右增大向右減小振子的動能增大減小增大減小彈簧的勢能減小增大減小增大系統(tǒng)總能量不變不變不變不變3.各相關物理量變化規(guī)律的總結:回復力的方向始終指向平衡位置,加速度的方向與回復力的方向相同,也始終指向平衡位置?;貜土εc加速度的方向總是與位移方向相反。速度方向與位移方向有時一致,有時相反;速度方向與回復力、加速度的方向也是有時一致,有時相反。因而速度的方向與其它各物理量的方向間沒有必然聯(lián)系在四個階段中,x、F、a、v、Ek、Ep、的大小變化可分為兩組,x、F、a、Ep為一組,v、Ek為另一組,每組中各量的變化步調一致,兩組間的變化步調相反。整個過程中總能量保持不變。當物體向著平衡位置運動時,a、v同向,振子做變加速運動,此時x↓F↓a↓Ep↓v↑Ek↑當物體遠離平衡位置運動時,a、v反向,振子做變減速運動,此時x↑F↑a↑Ep↑v↓Ek↓在平衡位置的兩側,距平衡位置等距離的點,各量的大小對應相等,振子的運動具有對稱性。知識歸納:1.簡諧運動是在與位移大小成正比,并且方向總指向平衡位置的回復力作用下的振動。做簡諧運動的質點,回復力總滿足F=-kx的形式。式中k是比例常數(shù)。2.簡諧運動系統(tǒng)的動能和勢能相互轉化,機械能守恒。鞏固練習:例1.在簡諧運動中,振子每次經過同一位置時,下列各組中描述振動的物理量總是相同的是()A.速度、加速度、動能B.加速度、回復力和位移C.加速度、動能和位移D.位移、動能、回復力變式1:做簡諧運動的物體,當位移為負值時,以下說法正確的是()A.速度一定為正值,加速度一定為正值B.速度不一定為正值,但加速度一定為正值C.速度一定為負值,加速度一定為正值D.速度不一定為負值,加速度一定為負值例2當一彈簧振子在豎直方向上做簡諧運動時,下列說法正確的()A.振子在振動過程中,速度相同時,彈簧的長度一定相等B.振子從最低點向平衡位置運動過程中,彈簧彈力始終做負功C.振子在振動過程中的回復力由彈簧的彈力和振子的重力的合力提供D.振子在振動過程中,系統(tǒng)的機械能一定守恒變式2:關于水平放置的彈簧振子做簡諧運動時的能量,下列說法正確的有()A.等于在平衡位置時振子的動能B.等于在最大位移時彈簧的彈性勢能C.等于任意時刻振子動能與彈簧彈性勢能之和D.位移越大振動能量也越大課后作業(yè):1、關于簡諧運動公式F=-kx中的k和x,以下說法中正確的有()A.k是彈簧的勁度系數(shù),x是彈簧的形變量B.k是回復力跟位移的比例常數(shù),x是物體離開平衡位置的位移C.對于彈簧振子系統(tǒng),k是彈簧的勁度系數(shù),它表示彈簧自身的性質D.根據(jù)k=-F/x,可以認為k與x成反比2、彈簧振子作簡諧運動時,以下說法正確的是()A.振子通過平衡位置時,回復力一定為零B.振子做減速運動,加速度卻在增大C.振子向平衡位置運動時,加速度方向與速度方向相反D.振子遠離平衡位置運動時,加速度方向與速度方向相反3、如圖所示,是一彈簧振子,設向右方向為正,O為平衡位置,則()ABOA.AABOB.O→B時,位移為正值,加速度為負值C.B→O時,位移為負值,速度為負值D.O→A時,位移為負值,加速度為正值4、一個彈簧振子在光滑的水平面上做簡諧運動,其中有兩個時刻彈簧振子的彈力大小相等,但方向相反,則這兩個時刻振子的()A.速度一定大小相等,方向相反B.加速度一定大小相等,方向相反C.位移一定大小相等,但方向不一定相反D.以上三項都不一定大小相等方向相反5、如圖是質點做簡諧振動的圖像,由此可知()A.t=0時,質點的位移、速度均為零B.t=1s時,質點的位移為正向最大,速度為零,加速度為負向最大C.t=2s時,質點的位移為零,速度為負向最大值,加速度為零D.質點的振幅為5cm,周期為2s6、一質點做簡諧運動,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論