第八講BlackScholes期權(quán)定價(jià)理論(貨幣金融學(xué))_第1頁(yè)
第八講BlackScholes期權(quán)定價(jià)理論(貨幣金融學(xué))_第2頁(yè)
第八講BlackScholes期權(quán)定價(jià)理論(貨幣金融學(xué))_第3頁(yè)
第八講BlackScholes期權(quán)定價(jià)理論(貨幣金融學(xué))_第4頁(yè)
第八講BlackScholes期權(quán)定價(jià)理論(貨幣金融學(xué))_第5頁(yè)
已閱讀5頁(yè),還剩72頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第八講

Black-Scholes期權(quán)定價(jià)實(shí)際1<金融經(jīng)濟(jì)學(xué)>第八講8.1Black-Scholes

歐式買入期權(quán)定價(jià)公式2<金融經(jīng)濟(jì)學(xué)>第八講3<金融經(jīng)濟(jì)學(xué)>第八講4<金融經(jīng)濟(jì)學(xué)>第八講5<金融經(jīng)濟(jì)學(xué)>第八講8.2Black-Scholes公式的前驅(qū)6<金融經(jīng)濟(jì)學(xué)>第八講7<金融經(jīng)濟(jì)學(xué)>第八講8<金融經(jīng)濟(jì)學(xué)>第八講8.3Black-Scholes公式的Cox-Ross-Rubinstein(二叉樹(shù)方法)推導(dǎo)9<金融經(jīng)濟(jì)學(xué)>第八講10<金融經(jīng)濟(jì)學(xué)>第八講11<金融經(jīng)濟(jì)學(xué)>第八講12<金融經(jīng)濟(jì)學(xué)>第八講13<金融經(jīng)濟(jì)學(xué)>第八講14<金融經(jīng)濟(jì)學(xué)>第八講15<金融經(jīng)濟(jì)學(xué)>第八講16<金融經(jīng)濟(jì)學(xué)>第八講17<金融經(jīng)濟(jì)學(xué)>第八講18<金融經(jīng)濟(jì)學(xué)>第八講19<金融經(jīng)濟(jì)學(xué)>第八講20<金融經(jīng)濟(jì)學(xué)>第八講21<金融經(jīng)濟(jì)學(xué)>第八講22<金融經(jīng)濟(jì)學(xué)>第八講23<金融經(jīng)濟(jì)學(xué)>第八講24<金融經(jīng)濟(jì)學(xué)>第八講25<金融經(jīng)濟(jì)學(xué)>第八講26<金融經(jīng)濟(jì)學(xué)>第八講27<金融經(jīng)濟(jì)學(xué)>第八講J.J.Laffont論

普通經(jīng)濟(jì)平衡與期權(quán)定價(jià)實(shí)際Jean-JacqueLaffont(1947-2004)以下的論述出于Laffont的名著<不確定性經(jīng)濟(jì)學(xué)和信息經(jīng)濟(jì)學(xué)>第99頁(yè)。TheEconomicsofUncertaintyandInformation,1988,Cambridge,Mass:MITPress.28<金融經(jīng)濟(jì)學(xué)>第八講J.J.Laffont論

普通經(jīng)濟(jì)平衡與期權(quán)定價(jià)實(shí)際InthetheoryoffinancethesituationoftenarisesinwhichrepeatedtransactionsofassetswithoutcontingentmarketsgeneratetheArrow-Debreuequilibrium(seeDuffieandHuang1985).在金融實(shí)際中,經(jīng)常出現(xiàn)這樣的情況:沒(méi)有未定市場(chǎng)時(shí),資產(chǎn)的反復(fù)買賣也能生成Arrow-Debreu平衡(見(jiàn)DuffieandHuang1985)。29<金融經(jīng)濟(jì)學(xué)>第八講J.J.Laffont論

普通經(jīng)濟(jì)平衡與期權(quán)定價(jià)實(shí)際Thereforeintroducingoptionsintosuchasituationcannotenlargethespaceofmarketsasitdidinthecasejustexamined.Themotivationgivenforintroducingoptionsisthenbasedonlyoneconomizingtransactionscosts.因此,在這樣的情況下引入期權(quán)不能夠如剛剛所調(diào)查的那樣來(lái)擴(kuò)展市場(chǎng)的空間。引入期權(quán)的動(dòng)機(jī)從而僅僅是基于節(jié)約買賣費(fèi)用。30<金融經(jīng)濟(jì)學(xué)>第八講J.J.Laffont論

普通經(jīng)濟(jì)平衡與期權(quán)定價(jià)實(shí)際Theoptioncanachievedirectlyaresultthatwouldrequiremultipletransactioninspotandfuturesmarkets.期權(quán)能夠直接到達(dá)一個(gè)在現(xiàn)貨和期貨市場(chǎng)上要求多次買賣的結(jié)果。31<金融經(jīng)濟(jì)學(xué)>第八講J.J.Laffont論

普通經(jīng)濟(jì)平衡與期權(quán)定價(jià)實(shí)際SincetheassetpricespriortotheintroductionofoptionsgenerateArrow-Debreuprices,itisnotsurprisingthatwecanderiveformulaeforevaluatingoptionsasafunctionoftherateofinterestandthepriceofafundamentalasset(theformulaofCox-Ross-Rubinsteinindiscretetime,andofBlackandScholesincontinuoustime;seeCoxandRubinstein1985).32<金融經(jīng)濟(jì)學(xué)>第八講J.J.Laffont論

普通經(jīng)濟(jì)平衡與期權(quán)定價(jià)實(shí)際由于在引進(jìn)期權(quán)以前的資產(chǎn)價(jià)錢生成Arrow-Debreu價(jià)錢,我們把期權(quán)估值作為利率和根本資產(chǎn)的價(jià)錢的函數(shù)來(lái)導(dǎo)出公式(在離散時(shí)間時(shí)的Cox-Ross-Rubinstein公式,在延續(xù)時(shí)間時(shí)的Black-Sholes公式;見(jiàn)CoxandRubinstein1985),就不會(huì)使人感到驚奇。33<金融經(jīng)濟(jì)學(xué)>第八講Black-Scholes實(shí)際的意義Themodeloffersamethodologytopredicttheseeminglyunpredictablebyusingthelessonsofcomplexmathematicsandprobabilitytheorytoforecaststockvaluations,makingitpossibletosuccessfullymanageriskinthefinancialmarket.模型提供一種方法論,它用復(fù)雜的數(shù)學(xué)和概率論來(lái)預(yù)測(cè)看起來(lái)是不可預(yù)知的股票估值,使得有能夠來(lái)勝利地管理金融市場(chǎng)中的風(fēng)險(xiǎn)。34<金融經(jīng)濟(jì)學(xué)>第八講Black-Scholes實(shí)際的意義Inlessthanthirtyyearsithaschangedthecourseofeconomictheoryandfinancialpractice.在不到三十年的時(shí)間里,它曾經(jīng)改動(dòng)了經(jīng)濟(jì)實(shí)際的課程和金融實(shí)際。35<金融經(jīng)濟(jì)學(xué)>第八講Black-Scholes實(shí)際的意義TheworkofRobertMerton,FischerBlackandMyronScholesistheculminationofaseriesofdiscoveriesandtheoriesspanningthetwentiethcentury.R.Merton、F.Black和M.Scholes的任務(wù)是整個(gè)二十世紀(jì)中一系列發(fā)現(xiàn)和實(shí)際的累積。36<金融經(jīng)濟(jì)學(xué)>第八講Black-Scholes實(shí)際的意義FromLouisBachelier,anobscureFrenchmathematicianwhowroteattheturnofthecentury,throughthecontributionsofscholarssuchasHarryMarkowitz,JohnLintner,WilliamSharpe,EugeneFama,FrancoModigliani,andMertonMiller,thequesttoapplythelessonsofprobabilitytheorytothestockmarkethasbeenakeyfocusoftwentieth-centuryAmericanfinance.37<金融經(jīng)濟(jì)學(xué)>第八講Black-Scholes實(shí)際的意義從一位鮮為人知的法國(guó)數(shù)學(xué)家L.Bachelier在世紀(jì)之交撰文,再經(jīng)過(guò)諸如H.Markowitz、J.Lintner、W.Sharpe、E.Fama、F.Modigliani、M.Miller這樣的學(xué)者的奉獻(xiàn),尋求把概率論運(yùn)用于股市曾經(jīng)成為二十世紀(jì)美國(guó)金融學(xué)的關(guān)鍵的焦點(diǎn)。-引自哈佛商學(xué)院Baker圖書(shū)館網(wǎng)頁(yè)38<金融經(jīng)濟(jì)學(xué)>第八講“二叉樹(shù)方法〞蘊(yùn)涵的各種概念隨機(jī)游走--布朗運(yùn)動(dòng)。事件樹(shù)〔信息流〕。概率空間:形狀空間〔樣本空間〕,事件集〔信息集〕,概率測(cè)度。前兩者又稱“可測(cè)空間〞。同樣的形狀空間可以有不同的事件集。越來(lái)越細(xì)的信息集〔事件集〕構(gòu)成信息流。隨機(jī)變量,隨機(jī)序列,隨機(jī)過(guò)程。它們都是依賴于概率空間〔可測(cè)空間〕的概念。39<金融經(jīng)濟(jì)學(xué)>第八講“二叉樹(shù)方法〞蘊(yùn)涵的各種概念(續(xù)〕價(jià)錢〔順應(yīng)過(guò)程〕,戰(zhàn)略〔可料過(guò)程〕。自融資戰(zhàn)略〔用一個(gè)銀行賬戶來(lái)記賬〕??山邮軕?zhàn)略,套利戰(zhàn)略。資產(chǎn)定價(jià)根本定理:無(wú)套利等價(jià)于存在鞅測(cè)度〔使得一切折現(xiàn)價(jià)錢過(guò)程為鞅〕。未定權(quán)益的折現(xiàn)價(jià)值都是鞅。40<金融經(jīng)濟(jì)學(xué)>第八講8.4普通的有限形狀多期模型41<金融經(jīng)濟(jì)學(xué)>第八講離散證券市場(chǎng)買賣的數(shù)學(xué)模型時(shí)間:N+1個(gè)時(shí)辰。信息:逐漸明確,用事件樹(shù)〔信息流〕來(lái)表示。信息集:指形狀集的-域,它是的子集的集合,對(duì)并、交、余運(yùn)算封鎖。在為有限集時(shí),每個(gè)-域?qū)?yīng)的一種分劃。42<金融經(jīng)濟(jì)學(xué)>第八講離散證券市場(chǎng)買賣的數(shù)學(xué)模型-域流:越來(lái)越細(xì)的-域。隨機(jī)變量:R的函數(shù),當(dāng)有限時(shí),它等同于一個(gè)向量。隨機(jī)過(guò)程:隨時(shí)間改動(dòng)的隨機(jī)變量。數(shù)學(xué)期望:隨機(jī)變量關(guān)于上的概率的平均值。43<金融經(jīng)濟(jì)學(xué)>第八講離散證券市場(chǎng)買賣的數(shù)學(xué)模型條件數(shù)學(xué)期望:首先要了解一個(gè)隨機(jī)變量對(duì)的一個(gè)子集的條件數(shù)學(xué)期望。然后了解對(duì)的一個(gè)分劃的條件數(shù)學(xué)期望。一個(gè)隨機(jī)變量的〔對(duì)一個(gè)分劃的)條件數(shù)學(xué)期望也可看作一個(gè)隨機(jī)變量,它是關(guān)于對(duì)應(yīng)這個(gè)分劃的-域的可測(cè)函數(shù)。關(guān)于某-域可測(cè)的隨機(jī)變量就是在對(duì)應(yīng)這一-域的分劃的子集上為常數(shù)的隨機(jī)變量。44<金融經(jīng)濟(jì)學(xué)>第八講45<金融經(jīng)濟(jì)學(xué)>第八講46<金融經(jīng)濟(jì)學(xué)>第八講47<金融經(jīng)濟(jì)學(xué)>第八講48<金融經(jīng)濟(jì)學(xué)>第八講49<金融經(jīng)濟(jì)學(xué)>第八講50<金融經(jīng)濟(jì)學(xué)>第八講離散證券市場(chǎng)買賣的數(shù)學(xué)模型價(jià)錢過(guò)程:證券價(jià)錢變化是越來(lái)越“模糊的〞。它是個(gè)隨機(jī)過(guò)程,但它在第n個(gè)時(shí)辰是個(gè)F_n-可測(cè)的隨機(jī)變量。這樣的過(guò)程稱為順應(yīng)過(guò)程。假設(shè)有K+1種證券,那么這K+1種證券的價(jià)錢過(guò)程構(gòu)成K+1維順應(yīng)過(guò)程。投資戰(zhàn)略也是K+1維隨機(jī)過(guò)程,但是投資戰(zhàn)略是對(duì)下一步起作用的,因此,它在第n+1個(gè)時(shí)辰是個(gè)F_n-可測(cè)的隨機(jī)變量。這樣的過(guò)程稱為可料過(guò)程。51<金融經(jīng)濟(jì)學(xué)>第八講52<金融經(jīng)濟(jì)學(xué)>第八講離散證券市場(chǎng)買賣的數(shù)學(xué)模型證券組合的價(jià)值:戰(zhàn)略過(guò)程與價(jià)錢過(guò)程的乘積。它也是個(gè)順應(yīng)過(guò)程。自融資戰(zhàn)略:證券組合價(jià)值的改動(dòng)僅僅是由于價(jià)錢變化引起的投資戰(zhàn)略。這是一種排除消費(fèi)的投資戰(zhàn)略。53<金融經(jīng)濟(jì)學(xué)>第八講54<金融經(jīng)濟(jì)學(xué)>第八講55<金融經(jīng)濟(jì)學(xué)>第八講56<金融經(jīng)濟(jì)學(xué)>第八講57<金融經(jīng)濟(jì)學(xué)>第八講離散證券市場(chǎng)買賣的數(shù)學(xué)模型可接受戰(zhàn)略:證券組合價(jià)值總非負(fù)的自融資戰(zhàn)略。套利戰(zhàn)略:證券組合的初值為零,終值(隨機(jī)變量)為正(概率意義下)的可接受戰(zhàn)略。套利戰(zhàn)略也可定義為證券組合的初值為零,終值為正的自融資戰(zhàn)略。兩者在數(shù)學(xué)上等價(jià)。58<金融經(jīng)濟(jì)學(xué)>第八講59<金融經(jīng)濟(jì)學(xué)>第八講60<金融經(jīng)濟(jì)學(xué)>第八講8.5資產(chǎn)定價(jià)根本定理的新方式

以及鞅的概念61<金融經(jīng)濟(jì)學(xué)>第八講離散證券市場(chǎng)買賣的數(shù)學(xué)模型可生存市場(chǎng):不存在套利戰(zhàn)略的市場(chǎng)。鞅:這是一個(gè)順應(yīng)過(guò)程,其n+1時(shí)的值對(duì)F_n的條件期望就等于它在n時(shí)的值。資產(chǎn)定價(jià)根本定理的新方式:市場(chǎng)可生存的充要條件為存在等價(jià)概率測(cè)度,使得折現(xiàn)價(jià)錢過(guò)程為鞅。62<金融經(jīng)濟(jì)學(xué)>第八講63<金融經(jīng)濟(jì)學(xué)>第八講64<金融經(jīng)濟(jì)學(xué)>第八講65<金融經(jīng)濟(jì)學(xué)>第八講66<金融經(jīng)濟(jì)學(xué)>第八講離散證券市場(chǎng)買賣的數(shù)學(xué)模

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論