版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆湖北省重點(diǎn)高中數(shù)學(xué)高三第一學(xué)期期末聯(lián)考模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將4名大學(xué)生分配到3個(gè)鄉(xiāng)鎮(zhèn)去當(dāng)村官,每個(gè)鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是()A.18種 B.36種 C.54種 D.72種2.已知等差數(shù)列的前項(xiàng)和為,,,則()A.25 B.32 C.35 D.403.函數(shù)的圖像大致為()A. B.C. D.4.若雙曲線:的一條漸近線方程為,則()A. B. C. D.5.對(duì)于任意,函數(shù)滿足,且當(dāng)時(shí),函數(shù).若,則大小關(guān)系是()A. B. C. D.6.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.7.已知拋物線:,點(diǎn)為上一點(diǎn),過點(diǎn)作軸于點(diǎn),又知點(diǎn),則的最小值為()A. B. C.3 D.58.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個(gè)八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個(gè)爻組成,其中“”表示一個(gè)陽爻,“”表示一個(gè)陰爻).若從含有兩個(gè)及以上陽爻的卦中任取兩卦,這兩卦的六個(gè)爻中都恰有兩個(gè)陽爻的概率為()A. B. C. D.9.若不等式對(duì)恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.10.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請歸但求穿墻術(shù).得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術(shù)”:,,,,則按照以上規(guī)律,若具有“穿墻術(shù)”,則()A.48 B.63 C.99 D.12011.已知,則()A. B. C. D.12.設(shè)正項(xiàng)等差數(shù)列的前項(xiàng)和為,且滿足,則的最小值為A.8 B.16 C.24 D.36二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,滿足,,且.若任意,成立,則實(shí)數(shù)的取值范圍為__________.14.若曲線(其中常數(shù))在點(diǎn)處的切線的斜率為1,則________.15.已知函數(shù)恰好有3個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為____16.如圖,在梯形中,∥,分別是的中點(diǎn),若,則的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線是曲線的切線.(1)求函數(shù)的解析式,(2)若,證明:對(duì)于任意,有且僅有一個(gè)零點(diǎn).18.(12分)已知點(diǎn)和橢圓.直線與橢圓交于不同的兩點(diǎn),.(1)當(dāng)時(shí),求的面積;(2)設(shè)直線與橢圓的另一個(gè)交點(diǎn)為,當(dāng)為中點(diǎn)時(shí),求的值.19.(12分)如圖,四棱錐的底面中,為等邊三角形,是等腰三角形,且頂角,,平面平面,為中點(diǎn).(1)求證:平面;(2)若,求二面角的余弦值大小.20.(12分)某工廠,兩條相互獨(dú)立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過日常監(jiān)控得知,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為和.(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.(2)假設(shè)不合格的產(chǎn)品均可進(jìn)行返工修復(fù)為合格品,以(1)中確定的作為的值.①已知,生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回?fù)p失元和元.若從兩條生產(chǎn)線上各隨機(jī)抽檢件產(chǎn)品,以挽回?fù)p失的平均數(shù)為判斷依據(jù),估計(jì)哪條生產(chǎn)線挽回的損失較多?②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級(jí)分類后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機(jī)抽取件進(jìn)行檢測,結(jié)果統(tǒng)計(jì)如下圖;用樣本的頻率分布估計(jì)總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為,求的分布列并估算該廠產(chǎn)量件時(shí)利潤的期望值.21.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最大值為,若,證明:.22.(10分)已知函數(shù),它的導(dǎo)函數(shù)為.(1)當(dāng)時(shí),求的零點(diǎn);(2)當(dāng)時(shí),證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個(gè)鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點(diǎn)睛】本題考查排列組合,屬于基礎(chǔ)題.2、C【解析】
設(shè)出等差數(shù)列的首項(xiàng)和公差,即可根據(jù)題意列出兩個(gè)方程,求出通項(xiàng)公式,從而求得.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則,解得,∴,即有.故選:C.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式的求法和應(yīng)用,涉及等差數(shù)列的前項(xiàng)和公式的應(yīng)用,屬于容易題.3、A【解析】
根據(jù)排除,,利用極限思想進(jìn)行排除即可.【詳解】解:函數(shù)的定義域?yàn)?,恒成立,排除,,?dāng)時(shí),,當(dāng),,排除,故選:.【點(diǎn)睛】本題主要考查函數(shù)圖象的識(shí)別和判斷,利用函數(shù)值的符號(hào)以及極限思想是解決本題的關(guān)鍵,屬于基礎(chǔ)題.4、A【解析】
根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點(diǎn)睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.5、A【解析】
由已知可得的單調(diào)性,再由可得對(duì)稱性,可求出在單調(diào)性,即可求出結(jié)論.【詳解】對(duì)于任意,函數(shù)滿足,因?yàn)楹瘮?shù)關(guān)于點(diǎn)對(duì)稱,當(dāng)時(shí),是單調(diào)增函數(shù),所以在定義域上是單調(diào)增函數(shù).因?yàn)?,所以?故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較函數(shù)值的大小,解題的關(guān)鍵要掌握函數(shù)對(duì)稱性的代數(shù)形式,屬于中檔題..6、A【解析】
由題意可知直線過定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡并求解出離心率的取值范圍.【詳解】設(shè),且線過定點(diǎn)即為的圓心,因?yàn)?,所以,又因?yàn)?,所以,所以,所以,所以,所以,所以,所?故選:A.【點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡化運(yùn)算.7、C【解析】
由,再運(yùn)用三點(diǎn)共線時(shí)和最小,即可求解.【詳解】.故選:C【點(diǎn)睛】本題考查拋物線的定義,合理轉(zhuǎn)化是本題的關(guān)鍵,注意拋物線的性質(zhì)的靈活運(yùn)用,屬于中檔題.8、B【解析】
基本事件總數(shù)為個(gè),都恰有兩個(gè)陽爻包含的基本事件個(gè)數(shù)為個(gè),由此求出概率.【詳解】解:由圖可知,含有兩個(gè)及以上陽爻的卦有巽、離、兌、乾四卦,取出兩卦的基本事件有(巽,離),(巽,兌),(巽,乾),(離,兌),(離,乾),(兌,乾)共個(gè),其中符合條件的基本事件有(巽,離),(巽,兌),(離,兌)共個(gè),所以,所求的概率.故選:B.【點(diǎn)睛】本題滲透傳統(tǒng)文化,考查概率、計(jì)數(shù)原理等基本知識(shí),考查抽象概括能力和應(yīng)用意識(shí),屬于基礎(chǔ)題.9、B【解析】
轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設(shè),則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B【點(diǎn)睛】本題考查了導(dǎo)數(shù)在恒成立問題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.10、C【解析】
觀察規(guī)律得根號(hào)內(nèi)分母為分子的平方減1,從而求出n.【詳解】解:觀察各式發(fā)現(xiàn)規(guī)律,根號(hào)內(nèi)分母為分子的平方減1所以故選:C.【點(diǎn)睛】本題考查了歸納推理,發(fā)現(xiàn)總結(jié)各式規(guī)律是關(guān)鍵,屬于基礎(chǔ)題.11、D【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,即當(dāng)?shù)讛?shù)大于1時(shí)單調(diào)遞增,當(dāng)?shù)讛?shù)大于零小于1時(shí)單調(diào)遞減,對(duì)選項(xiàng)逐一驗(yàn)證即可得到正確答案.【詳解】因?yàn)?,所以,所以是減函數(shù),又因?yàn)?,所以,,所以,,所以A,B兩項(xiàng)均錯(cuò);又,所以,所以C錯(cuò);對(duì)于D,,所以,故選D.【點(diǎn)睛】這個(gè)題目考查的是應(yīng)用不等式的性質(zhì)和指對(duì)函數(shù)的單調(diào)性比較大小,兩個(gè)式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時(shí)可以代入一些特殊的數(shù)據(jù)得到具體值,進(jìn)而得到大小關(guān)系.12、B【解析】
方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設(shè),則,,則,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,從而的最小值為16,故選B.方法二:設(shè)正項(xiàng)等差數(shù)列的公差為d,由等差數(shù)列的前項(xiàng)和公式及,化簡可得,即,則,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,從而的最小值為16,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
當(dāng)時(shí),,可得到,再用累乘法求出,再求出,根據(jù)定義求出,再借助單調(diào)性求解.【詳解】解:當(dāng)時(shí),,則,,當(dāng)時(shí),,,,,,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),,故答案為:.【點(diǎn)睛】本題主要考查已知求,累乘法,主要考查計(jì)算能力,屬于中檔題.14、【解析】
利用導(dǎo)數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.15、【解析】
恰好有3個(gè)不同的零點(diǎn)恰有三個(gè)根,然后轉(zhuǎn)化成求函數(shù)值域即可.【詳解】解:恰好有3個(gè)不同的零點(diǎn)恰有三個(gè)根,令,,在遞增;,遞減,遞增,時(shí),在有一個(gè)零點(diǎn),在有2個(gè)零點(diǎn);故答案為:.【點(diǎn)睛】已知函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍是重點(diǎn)也是難點(diǎn),這類題一般用分離參數(shù)的方法,中檔題.16、【解析】
建系,設(shè)設(shè),由可得,進(jìn)一步得到的坐標(biāo),再利用數(shù)量積的坐標(biāo)運(yùn)算即可得到答案.【詳解】以A為坐標(biāo)原點(diǎn),AD為x軸建立如圖所示的直角坐標(biāo)系,設(shè),則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點(diǎn)睛】本題考查利用坐標(biāo)法求向量的數(shù)量積,考查學(xué)生的運(yùn)算求解能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)對(duì)函數(shù)求導(dǎo),并設(shè)切點(diǎn),利用點(diǎn)既在曲線上、又在切線上,列出方程組,解得,即可得答案;(2)當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),可得至少有一個(gè)零點(diǎn).再證明零點(diǎn)的唯一性,即對(duì)函數(shù)求導(dǎo)得,對(duì)分和兩種情況討論,即可得答案.【詳解】(1)根據(jù)題意,,設(shè)直線與曲線相切于點(diǎn).根據(jù)題意,可得,解之得,所以.(2)由(1)可知,則當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),∴至少有一個(gè)零點(diǎn).∵,①若,則,在上單調(diào)遞增,∴有唯一零點(diǎn).②若令,得有兩個(gè)極值點(diǎn),∵,∴,∴.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.∴極大值為.,又,∴在(0,16)上單調(diào)遞增,∴,∴有唯一零點(diǎn).綜上可知,對(duì)于任意,有且僅有一個(gè)零點(diǎn).【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的運(yùn)用、利用導(dǎo)數(shù)證明函數(shù)的零點(diǎn)個(gè)數(shù),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意零點(diǎn)存在定理的運(yùn)用.18、(1);(2)或【解析】
(1)聯(lián)立直線的方程和橢圓方程,求得交點(diǎn)的橫坐標(biāo),由此求得三角形的面積.(2)法一:根據(jù)的坐標(biāo)求得的坐標(biāo),將的坐標(biāo)都代入橢圓方程,化簡后求得的坐標(biāo),進(jìn)而求得的值.法二:設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,化簡后寫出根與系數(shù)關(guān)系,結(jié)合求得點(diǎn)的坐標(biāo),進(jìn)而求得的值.【詳解】(1)設(shè),,若,則直線的方程為,由,得,解得,,設(shè)直線與軸交于點(diǎn),則且.(2)法一:設(shè)點(diǎn)因?yàn)?,,所以又點(diǎn),都在橢圓上,所以解得或所以或.法二:設(shè)顯然直線有斜率,設(shè)直線的方程為由,得所以又解得或所以或所以或.【點(diǎn)睛】本小題主要考查直線和橢圓的位置關(guān)系,考查橢圓中三角形面積的求法,考查運(yùn)算求解能力,屬于中檔題.19、(1)見解析;(2)【解析】
(1)設(shè)中點(diǎn)為,連接、,首先通過條件得出,加,可得,進(jìn)而可得平面,再加上平面,可得平面平面,則平面;(2)設(shè)中點(diǎn)為,連接、,可得平面,加上平面,則可如圖建立直角坐標(biāo)系,求出平面的法向量和平面的法向量,利用向量法可得二面角的余弦值.【詳解】(1)證明:設(shè)中點(diǎn)為,連接、,為等邊三角形,,,,,,即,,,平面,平面,平面,為的中位線,,平面,平面,平面,、為平面內(nèi)二相交直線,平面平面,平面DMN,平面;(2)設(shè)中點(diǎn)為,連接、為等邊三角形,是等腰三角形,且頂角,,、、共線,,,,,平面平面.平面平面平面,交線為,平面平面.設(shè),則在中,由余弦定理,得:又,,,,,為中點(diǎn),,建立直角坐標(biāo)系(如圖),則,,,.,,設(shè)平面的法向量為,則,,取,則,,平面的法向量為,,二面角為銳角,二面角的余弦值大小為.【點(diǎn)睛】本題考查面面平行證明線面平行,考查向量法求二面角的大小,考查學(xué)生計(jì)算能力和空間想象能力,是中檔題.20、(1)(2)①生產(chǎn)線上挽回的損失較多.②見解析【解析】
(1)由題意得到關(guān)于的不等式,求解不等式得到的取值范圍即可確定其最小值;(2)①.由題意利用二項(xiàng)分布的期望公式和數(shù)學(xué)期望的性質(zhì)給出結(jié)論即可;②.由題意首先確定X可能的取值,然后求得相應(yīng)的概率值可得分布列,最后由分布列可得利潤的期望值.【詳解】(1)設(shè)從,生產(chǎn)線上各抽檢一件產(chǎn)品,至少有一件合格為事件,設(shè)從,生產(chǎn)線上抽到合格品分別為事件,,則,互為獨(dú)立事件由已知有,則解得,則的最小值(2)由(1)知,生產(chǎn)線的合格率分別為和,即不合格率分別為和.①設(shè)從,生產(chǎn)線上各抽檢件產(chǎn)品,抽到不合格產(chǎn)品件數(shù)分別為,,則有,,所以,生產(chǎn)線上挽回?fù)p失的平均數(shù)分別為:,所以生產(chǎn)線上挽回的損失較多.②由已知得的可能取值為,,,用樣本估計(jì)總體,則有,,所以的分布列為所以(元)故估算估算該廠產(chǎn)量件時(shí)利潤的期望值為(元)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 長沙衛(wèi)生職業(yè)學(xué)院《管理溝通(英語)》2023-2024學(xué)年第一學(xué)期期末試卷
- 云南農(nóng)業(yè)大學(xué)《建筑工業(yè)化與裝配式結(jié)構(gòu)》2023-2024學(xué)年第一學(xué)期期末試卷
- 孩子里程碑的教育模板
- 保險(xiǎn)業(yè)基礎(chǔ)講解模板
- 述職報(bào)告創(chuàng)新實(shí)踐
- 職業(yè)導(dǎo)論-房地產(chǎn)經(jīng)紀(jì)人《職業(yè)導(dǎo)論》點(diǎn)睛提分卷3
- 年終工作總結(jié)格式要求
- 二零二五版LNG液化天然氣裝運(yùn)合同3篇
- 二零二五年度汽車后市場擔(dān)保合作協(xié)議合同范本集錦:維修保養(yǎng)服務(wù)2篇
- 二零二五版國際金融公司勞務(wù)派遣與風(fēng)險(xiǎn)管理協(xié)議3篇
- 一個(gè)女兒的離婚協(xié)議書模板
- 2024年重點(diǎn)高中自主招生物理試題含答案
- 2020-2021學(xué)年-人教版八年級(jí)英語下冊-Unit-1-閱讀理解專題訓(xùn)練(含答案)
- 智慧農(nóng)業(yè)總體實(shí)施方案(2篇)
- 天然甜味劑的開發(fā)與應(yīng)用
- 2024年大學(xué)試題(宗教學(xué))-佛教文化筆試參考題庫含答案
- 農(nóng)村生活污水處理站運(yùn)營維護(hù)方案
- 部編版小學(xué)語文四年級(jí)下冊二單元教材分析解讀主講課件
- 2023年譯林版英語五年級(jí)下冊Units-1-2單元測試卷-含答案
- 人教版三年級(jí)上冊脫式計(jì)算200題及答案
- 視覺傳達(dá)設(shè)計(jì)史平面設(shè)計(jì)的起源與發(fā)展課件
評(píng)論
0/150
提交評(píng)論