




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆吉林省長春市九臺區(qū)四中高三數(shù)學第一學期期末學業(yè)質量監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.2.已知函數(shù)的定義域為,則函數(shù)的定義域為()A. B.C. D.3.執(zhí)行如圖的程序框圖,若輸出的結果,則輸入的值為()A. B.C.3或 D.或4.已知,其中是虛數(shù)單位,則對應的點的坐標為()A. B. C. D.5.四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數(shù)是()A.12 B.16 C.20 D.86.已知實數(shù)x,y滿足,則的最小值等于()A. B. C. D.7.若集合,,則下列結論正確的是()A. B. C. D.8.集合,則()A. B. C. D.9.的內(nèi)角的對邊分別為,已知,則角的大小為()A. B. C. D.10.已知函數(shù)(),若函數(shù)在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或011.在直角中,,,,若,則()A. B. C. D.12.在中,內(nèi)角所對的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在△ABC中,AB=4,D是AB的中點,E在邊AC上,AE=2EC,CD與BE交于點O,若OB=OC,則△ABC面積的最大值為_______.14.給出下列等式:,,,…請從中歸納出第個等式:______.15.函數(shù)的圖像如圖所示,則該函數(shù)的最小正周期為________.16.已知是同一球面上的四個點,其中平面,是正三角形,,則該球的表面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)時,求不等式解集;(2)若的解集包含于,求a的取值范圍.18.(12分)已知函數(shù).(1)證明:當時,;(2)若函數(shù)只有一個零點,求正實數(shù)的值.19.(12分)已知函數(shù).(1)討論的單調性;(2)曲線在點處的切線斜率為.(i)求;(ii)若,求整數(shù)的最大值.20.(12分)已知圓:和拋物線:,為坐標原點.(1)已知直線和圓相切,與拋物線交于兩點,且滿足,求直線的方程;(2)過拋物線上一點作兩直線和圓相切,且分別交拋物線于兩點,若直線的斜率為,求點的坐標.21.(12分)已知函數(shù)(1)已知直線:,:.若直線與關于對稱,又函數(shù)在處的切線與垂直,求實數(shù)的值;(2)若函數(shù),則當,時,求證:①;②.22.(10分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為.(1)求直線和圓的普通方程;(2)已知直線上一點,若直線與圓交于不同兩點,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)表示圓和直線與圓有公共點,得到,再利用二次函數(shù)的性質求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關系以及二次函數(shù)的性質,還考查了運算求解的能力,屬于中檔題.2、A【解析】試題分析:由題意,得,解得,故選A.考點:函數(shù)的定義域.3、D【解析】
根據(jù)逆運算,倒推回求x的值,根據(jù)x的范圍取舍即可得選項.【詳解】因為,所以當,解得
,所以3是輸入的x的值;當時,解得,所以是輸入的x的值,所以輸入的x的值為
或3,故選:D.【點睛】本題考查了程序框圖的簡單應用,通過結果反求輸入的值,屬于基礎題.4、C【解析】
利用復數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對應的點的坐標為,,.故選:.【點睛】本題考查復數(shù)的代數(shù)表示法及其幾何意義,考查復數(shù)相等的條件,是基礎題.5、A【解析】
先將除A,B以外的兩人先排,再將A,B在3個空位置里進行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個空位置里進行插空,有種,所以共有種.故選:A【點睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎題.6、D【解析】
設,,去絕對值,根據(jù)余弦函數(shù)的性質即可求出.【詳解】因為實數(shù),滿足,設,,,恒成立,,故則的最小值等于.故選:.【點睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質,考查了運算能力和轉化能力,意在考查學生對這些知識的理解掌握水平.7、D【解析】
由題意,分析即得解【詳解】由題意,故,故選:D【點睛】本題考查了元素和集合,集合和集合之間的關系,考查了學生概念理解,數(shù)學運算能力,屬于基礎題.8、D【解析】
利用交集的定義直接計算即可.【詳解】,故,故選:D.【點睛】本題考查集合的交運算,注意常見集合的符號表示,本題屬于基礎題.9、A【解析】
先利用正弦定理將邊統(tǒng)一化為角,然后利用三角函數(shù)公式化簡,可求出解B.【詳解】由正弦定理可得,即,即有,因為,則,而,所以.故選:A【點睛】此題考查了正弦定理和三角函數(shù)的恒等變形,屬于基礎題.10、C【解析】
求出函數(shù)的導函數(shù),當時,只需,即,令,利用導數(shù)求其單調區(qū)間,即可求出參數(shù)的值,當時,根據(jù)函數(shù)的單調性及零點存在性定理可判斷;【詳解】解:∵(),∴,∴當時,由得,則在上單調遞減,在上單調遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調遞增.∵,∴;當時,,函數(shù)在上單調遞減,∵,,函數(shù)在上有且只有一個零點,∴的值是1或0.故選:C【點睛】本題考查利用導數(shù)研究函數(shù)的零點問題,零點存在性定理的應用,屬于中檔題.11、C【解析】
在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結合向量數(shù)量積的定義和性質:向量的平方即為模的平方,化簡計算即可得到所求值.【詳解】在直角中,,,,,
,
若,則故選C.【點睛】本題考查向量的加減運算和數(shù)量積的定義和性質,主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.12、C【解析】
由等差數(shù)列的性質、同角三角函數(shù)的關系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先根據(jù)點共線得到,從而得到O的軌跡為阿氏圓,結合三角形和三角形的面積關系可求.【詳解】設B,O,E共線,則,解得,從而O為CD中點,故.在△BOD中,BD=2,,易知O的軌跡為阿氏圓,其半徑,故.故答案為:.【點睛】本題主要考查三角形的面積問題,把所求面積進行轉化是求解的關鍵,側重考查數(shù)學運算的核心素養(yǎng).14、【解析】
通過已知的三個等式,找出規(guī)律,歸納出第個等式即可.【詳解】解:因為:,,,等式的右邊系數(shù)是2,且角是等比數(shù)列,公比為,則角滿足:第個等式中的角,所以;故答案為:.【點睛】本題主要考查歸納推理,注意已知表達式的特征是解題的關鍵,屬于中檔題.15、【解析】
根據(jù)圖象利用,先求出的值,結合求出,然后利用周期公式進行求解即可.【詳解】解:由,得,,,則,,,即,則函數(shù)的最小正周期,故答案為:8【點睛】本題主要考查三角函數(shù)周期的求解,結合圖象求出函數(shù)的解析式是解決本題的關鍵.16、【解析】
求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進而求得外接球的表面積.【詳解】設是等邊三角形的外心,則球心在其正上方處.設,由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點睛】本小題主要考查幾何體外接球表面積的計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)代入可得對分類討論即可得不等式的解集;(2)根據(jù)不等式在上恒成立去絕對值化簡可得再去絕對值即可得關于的不等式組解不等式組即可求得的取值范圍【詳解】(1)當時,不等式可化為,①當時,不等式為,解得;②當時,不等式為,無解;③當時,不等式為,解得,綜上,原不等式的解集為.(2)因為的解集包含于,則不等式可化為,即.解得,由題意知,解得,所以實數(shù)a的取值范圍是.【點睛】本題考查了絕對值不等式的解法分類討論解絕對值不等式的應用,含參數(shù)不等式的解法.難度一般.18、(1)證明見解析;(2).【解析】
(1)把轉化成,令,由題意得,即證明恒成立,通過導數(shù)求證即可(2)直接求導可得,,令,得或,故根據(jù)0與的大小關系來進行分類討論即可【詳解】證明:(1)令,則.分析知,函數(shù)的增區(qū)間為,減區(qū)間為.所以當時,.所以,即,所以.所以當時,.解:(2)因為,所以.討論:①當時,,此時函數(shù)在區(qū)間上單調遞減.又,故此時函數(shù)僅有一個零點為0;②當時,令,得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極大值,所以極小值.當時,有.又,此時,故當時,函數(shù)還有一個零點,不符合題意;③當時,令得,故函數(shù)的增區(qū)間為,減區(qū)間為,.又極小值,所以極大值.若,則,得,所以,所以當且時,,故此時函數(shù)還有一個零點,不符合題意.綜上,所求實數(shù)的值為.【點睛】本題考查不等式的恒成立問題和函數(shù)的零點問題,本題的難點在于把導數(shù)化成因式分解的形式,如,進而分類討論,本題屬于難題19、(1)在上增;在上減;(2)(i);(ii)2【解析】
(1)求導求出,對分類討論,求出的解,即可得出結論;(2)(i)由,求出的值;(ii)由(i)得所求問題轉化為,恒成立,設,,只需,根據(jù)的單調性,即可求解.【詳解】(1)當時,,即在上增;當時,,,,,即在上增;在上減;(2)(i),.(ⅱ),即,即,只需.當時,,在單調遞增,所以滿足題意;當時,,,,所以在上減,在上增,令,..在單調遞減,所以所以在上單調遞減,,綜上可知,整數(shù)的最大值為.【點睛】本題考查函數(shù)導數(shù)的綜合應用,涉及函數(shù)的單調性、導數(shù)的幾何意義、極值最值、不等式恒成立,考查分類討論思想,屬于中檔題.20、(1);(2)或.【解析】試題分析:直線與圓相切只需圓心到直線的距離等于圓的半徑,直線與曲線相交于兩點,且滿足,只需數(shù)量積為0,要聯(lián)立方程組設而不求,利用坐標關系及根與系數(shù)關系解題,這是解析幾何常用解題方法,第二步利用直線的斜率找出坐標滿足的要求,再利用兩直線與圓相切,求出點的坐標.試題解析:(1)解:設,,,由和圓相切,得.∴.由消去,并整理得,∴,.由,得,即.∴.∴,∴,∴.∴.∴或(舍).當時,,故直線的方程為.(2)設,,,則.∴.設,由直線和圓相切,得,即.設,同理可得:.故是方程的兩根,故.由得,故.同理,則,即.∴,解或.當時,;當時,.故或.21、(1)(2)①證明見解析②證明見解析【解析】
(1)首先根據(jù)直線關于直線對稱的直線的求法,求得的方程及其斜率.根據(jù)函數(shù)在處的切線與垂直列方程,解方程求得的值.(2)①構造函數(shù),利用的導函數(shù)證得當時,,由此證得.②由①知成立,整理得成立.利用構造函數(shù)法證得,由此得到,即,化簡后得到.【詳解】(1)由解得必過與的交點.在上取點,易得點關于對稱的點為,即為直線,所以的方程為,即,其斜率為.又因為,所以,,由題意,解得.(2)因為,所以.①令,則,則,且,,時,,單調遞減;時,,單調遞增.因為,所以,因為,所以存在,使時,,單調遞增;時,,單調遞減;時,,單調遞增.又,所以時,,即,所以,即成立.②由①知成立,即有成立.令,即.所以時,,單調遞增;時,,單調遞減,所以,即,因為,所以,所以時,,即時,.【點睛】本小題考查函數(shù)圖象的對稱性,利用導數(shù)求切線的斜率,利用導數(shù)證明不等式等基礎知識;考查學生分析問題,解決問題的能力,推理與運算求解能力,轉化與化歸思想,數(shù)形結合思想和應用意識.22、(1),;(2)【解析】分析:(1)用代入法消參數(shù)可得直線的普通方程,由公式可化極坐標方程為直角坐標方程;(2)把直線的參數(shù)方程代入曲線的直角坐標方程,其中參數(shù)的絕對值表示直線上對應點到的距離,因此有,,直接由韋達定理可得,注意到直線與圓相交,因此判別式>0,這
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45220-2025大規(guī)模定制多主體畫像系統(tǒng)參考架構
- 臨沭租房合同范本
- 2025年梧州貨運從業(yè)資格考題
- 2025年景德鎮(zhèn)貨運從業(yè)資格仿真考題
- 醫(yī)院食堂押金合同范本
- 個人和工廠合作合同范本
- 保健品定購合同范本
- 加工類工程合同范本
- 農(nóng)業(yè)倉庫出租合同范本
- 債務繼承協(xié)議合同范例
- DL5190.5-2019電力建設施工技術規(guī)范第5部分:管道及系統(tǒng)
- 農(nóng)信銀支付系統(tǒng)文檔
- 華為認證HCIA-Security安全H12-711考試題庫及答案
- 建筑工地春節(jié)前安全教育
- (正式版)YST 1682-2024 鎂冶煉行業(yè)綠色工廠評價要求
- DL-T 5148-2021水工建筑物水泥灌漿施工技術條件-PDF解密
- JGJ6-2011 高層建筑筏形與箱形基礎技術規(guī)范
- 人工智能復習題(答案)及人工智能復習題與答案
- 桌游店創(chuàng)業(yè)計劃書
- 頸動脈斑塊預防課件
- 【上市公司財務造假驅動因素探究文獻綜述3100字】
評論
0/150
提交評論