2024屆重慶市萬州區(qū)分水中學高三上數(shù)學期末達標測試試題含解析_第1頁
2024屆重慶市萬州區(qū)分水中學高三上數(shù)學期末達標測試試題含解析_第2頁
2024屆重慶市萬州區(qū)分水中學高三上數(shù)學期末達標測試試題含解析_第3頁
2024屆重慶市萬州區(qū)分水中學高三上數(shù)學期末達標測試試題含解析_第4頁
2024屆重慶市萬州區(qū)分水中學高三上數(shù)學期末達標測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆重慶市萬州區(qū)分水中學高三上數(shù)學期末達標測試試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點在四棱錐的外接球面上運動,記點到平面的距離為,若平面平面,則的最大值為()A. B.C. D.2.函數(shù)的部分圖像大致為()A. B.C. D.3.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數(shù)是()A. B. C. D.4.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側(cè)視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.5.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.6.某大學計算機學院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領域的語音識別、人臉識別,數(shù)據(jù)分析、機器學習、服務器開發(fā)五個方向展開研究,且每個方向均有研究生學習,其中劉澤同學學習人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種7.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.8.已知,,若,則向量在向量方向的投影為()A. B. C. D.9.已知為拋物線的準線,拋物線上的點到的距離為,點的坐標為,則的最小值是()A. B.4 C.2 D.10.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.11.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則12.如圖是來自古希臘數(shù)學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,的夾角為30°,,則_________.14.的展開式中的系數(shù)為__________.15.若函數(shù)與函數(shù),在公共點處有共同的切線,則實數(shù)的值為______.16.已知數(shù)列與均為等差數(shù)列(),且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.18.(12分)如圖是圓的直徑,垂直于圓所在的平面,為圓周上不同于的任意一點(1)求證:平面平面;(2)設為的中點,為上的動點(不與重合)求二面角的正切值的最小值19.(12分)已知函數(shù).(1)證明:函數(shù)在上存在唯一的零點;(2)若函數(shù)在區(qū)間上的最小值為1,求的值.20.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,且,(,且)(1)求數(shù)列的通項公式;(2)證明:當時,21.(12分)的內(nèi)角的對邊分別為,若(1)求角的大?。?)若,求的周長22.(10分)某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機抽取件產(chǎn)品,統(tǒng)計其質(zhì)量指標值并繪制頻率分布直方圖(如圖1):規(guī)定產(chǎn)品的質(zhì)量指標值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時劣質(zhì)品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產(chǎn)品的質(zhì)量指標值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標值位于該區(qū)間的概率.(1)求每件產(chǎn)品的平均銷售利潤;(2)該企業(yè)主管部門為了解企業(yè)年營銷費用(單位:萬元)對年銷售量(單位:萬件)的影響,對該企業(yè)近年的年營銷費用和年銷售量,數(shù)據(jù)做了初步處理,得到的散點圖(如圖2)及一些統(tǒng)計量的值.表中,,,.根據(jù)散點圖判斷,可以作為年銷售量(萬件)關于年營銷費用(萬元)的回歸方程.①求關于的回歸方程;②用所求的回歸方程估計該企業(yè)每年應投入多少營銷費,才能使得該企業(yè)的年收益的預報值達到最大?(收益銷售利潤營銷費用,取)附:對于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計分別為,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)平面平面,四邊形為等腰梯形,則球心在過的中點的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【詳解】依題意如圖所示:取的中點,則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設四棱錐的外接球半徑為,則,而,所以,故選:A.【點睛】本題考查組合體、球,還考查空間想象能力以及數(shù)形結合的思想,屬于難題.2、A【解析】

根據(jù)函數(shù)解析式,可知的定義域為,通過定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,∴為偶函數(shù),圖象關于軸對稱,排除選項,且當時,,排除選項,所以正確.故選:A.【點睛】本題考查由函數(shù)解析式識別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進行排除.3、B【解析】

先明確該程序框圖的功能是計算兩個數(shù)的最大公約數(shù),再利用輾轉(zhuǎn)相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數(shù),所以,,,故當輸入,,則計算機輸出的數(shù)是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.4、A【解析】

作出其直觀圖,然后結合數(shù)據(jù)根據(jù)勾股定定理計算每一條棱長即可.【詳解】根據(jù)三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.【點睛】本題考查了四棱錐的三視圖的有關計算,正確還原直觀圖是解題關鍵,屬于基礎題.5、D【解析】

根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進而求出,再根據(jù)復合函數(shù)的單調(diào)性,即可求出結論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復合函數(shù)單調(diào)性判斷方法,屬于中檔題.6、B【解析】

將人臉識別方向的人數(shù)分成:有人、有人兩種情況進行分類討論,結合捆綁計算出不同的分配方法數(shù).【詳解】當人臉識別方向有2人時,有種,當人臉識別方向有1人時,有種,∴共有360種.故選:B【點睛】本小題主要考查簡單排列組合問題,考查分類討論的數(shù)學思想方法,屬于基礎題.7、C【解析】

幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學生的計算能力和空間想象能力.8、B【解析】

由,,,再由向量在向量方向的投影為化簡運算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點睛】本題考查向量投影的幾何意義,屬于基礎題9、B【解析】

設拋物線焦點為,由題意利用拋物線的定義可得,當共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準線,過作交于點,連接由拋物線定義,

當且僅當三點共線時,取“=”號,∴的最小值為.

故選:B.【點睛】本題主要考查拋物線的定義、標準方程,以及簡單性質(zhì)的應用,體現(xiàn)了數(shù)形結合的數(shù)學思想,屬于中檔題.10、D【解析】

根據(jù)三角形的面積公式以及余弦定理進行化簡求出的值,然后利用兩角和差的正弦公式進行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點睛】本題主要考查解三角形的應用,結合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進行計算是解決本題的關鍵.11、C【解析】

根據(jù)線面的位置關系,結合線面平行的判定定理、平行線的性質(zhì)進行判斷即可.【詳解】A:當時,也可以滿足∥,b∥,故本命題不正確;B:當時,也可以滿足,,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當∥,,時,能得到,故本命題是正確的;D:當時,也可以滿足,b∥,故本命題不正確.故選:C【點睛】本題考查了線面的位置關系,考查了平行線的性質(zhì),考查了推理論證能力.12、D【解析】

由半圓面積之比,可求出兩個直角邊的長度之比,從而可知,結合同角三角函數(shù)的基本關系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點睛】本題考查了同角三角函數(shù)的基本關系,考查了二倍角公式.本題的關鍵是由面積比求出角的正切值.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

由求出,代入,進行數(shù)量積的運算即得.【詳解】,存在實數(shù),使得.不共線,.,,,的夾角為30°,.故答案為:1.【點睛】本題考查向量共線定理和平面向量數(shù)量積的運算,屬于基礎題.14、3【解析】

分別用1和進行分類討論即可【詳解】當?shù)谝粋€因式取1時,第二個因式應取含的項,則對應系數(shù)為:;當?shù)谝粋€因式取時,第二個因式應取含的項,則對應系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3【點睛】本題考查二項式定理中具體項對應系數(shù)的求解,屬于基礎題15、【解析】

函數(shù)的定義域為,求出導函數(shù),利用曲線與曲線公共點為由于在公共點處有共同的切線,解得,,聯(lián)立解得的值.【詳解】解:函數(shù)的定義域為,,,設曲線與曲線公共點為,由于在公共點處有共同的切線,∴,解得,.由,可得.聯(lián)立,解得.故答案為:.【點睛】本題考查函數(shù)的導數(shù)的應用,切線方程的求法,考查轉(zhuǎn)化思想以及計算能力,是中檔題.16、20【解析】

設等差數(shù)列的公差為,由數(shù)列為等差數(shù)列,且,根據(jù)等差中項的性質(zhì)可得,,解方程求出公差,代入等差數(shù)列的通項公式即可求解.【詳解】設等差數(shù)列的公差為,由數(shù)列為等差數(shù)列知,,因為,所以,解得,所以數(shù)列的通項公式為,所以.故答案為:【點睛】本題考查等差數(shù)列的概念及其通項公式和等差中項;考查運算求解能力;等差中項的運用是求解本題的關鍵;屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)不存在.【解析】

(1)由已知,利用基本不等式的和積轉(zhuǎn)化可求,利用基本不等式可將轉(zhuǎn)化為,由不等式的傳遞性,可求的最小值;(2)由基本不等式可求的最小值為,而,故不存在.【詳解】(1)由,得,且當時取等號.故,且當時取等號.所以的最小值為;(2)由(1)知,.由于,從而不存在,使得成立.【考點定位】基本不等式.18、(1)見解析(2)【解析】

(1)推導出,,從而平面,由面面垂直的判定定理即可得證.(2)過作,以為坐標原點,建立如圖所示空間坐標系,設,利用空間向量法表示出二面角的余弦值,當余弦值取得最大時,正切值求得最小值;【詳解】(1)因為,面,,平面,平面,平面,又平面,平面平面;(2)過作,以為坐標原點,建立如圖所示空間坐標系,則,設,則平面的一個法向量為設平面的一個法向量為則,即,令,如圖二面角的平面角為銳角,設二面角為,則,時取得最大值,最大值為,則最小值為【點睛】本題考查面面垂直的證明,利用空間向量法解決立體幾何問題,屬于中檔題.19、(1)證明見解析;(2)【解析】

(1)求解出導函數(shù),分析導函數(shù)的單調(diào)性,再結合零點的存在性定理說明在上存在唯一的零點即可;(2)根據(jù)導函數(shù)零點,判斷出的單調(diào)性,從而可確定,利用以及的單調(diào)性,可確定出之間的關系,從而的值可求.【詳解】(1)證明:∵,∴.∵在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,∴函數(shù)在上單調(diào)遞增.又,令,,則在上單調(diào)遞減,,故.令,則所以函數(shù)在上存在唯一的零點.(2)解:由(1)可知存在唯一的,使得,即(*).函數(shù)在上單調(diào)遞增.∴當時,,單調(diào)遞減;當時,,單調(diào)遞增.∴.由(*)式得.∴,顯然是方程的解.又∵是單調(diào)遞減函數(shù),方程有且僅有唯一的解,把代入(*)式,得,∴,即所求實數(shù)的值為.【點睛】本題考查函數(shù)與導數(shù)的綜合應用,其中涉及到判斷函數(shù)在給定區(qū)間上的零點個數(shù)以及根據(jù)函數(shù)的最值求解參數(shù),難度較難.(1)判斷函數(shù)的零點個數(shù)時,可結合函數(shù)的單調(diào)性以及零點的存在性定理進行判斷;(2)函數(shù)的“隱零點”問題,可通過“設而不求”的思想進行分析.20、(1)(2)見證明【解析】

(1)由題意將遞推關系式整理為關于與的關系式,求得前n項和然后確定通項公式即可;(2)由題意結合通項公式的特征放縮之后裂項求和即可證得題中的不等式.【詳解】(1)由,得,即,所以數(shù)列是以為首項,以為公差的等差數(shù)列,所以,即,當時,,當時,,也滿足上式,所以;(2)當時,,所以【點睛】給出與的遞推關系,求an,常用思路是:一是利用轉(zhuǎn)化為an的遞推關系,再求其通項公式;二是轉(zhuǎn)化為Sn的遞推關系,先求出Sn與n之間的關系,再求an.21、(1)(2)11【解析】

(1)利用二倍角公式將式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論