版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
陜西省安康市重點中學(xué)2024屆高三第六次月考試卷(數(shù)學(xué)試題理)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,集合,那么等于()A. B. C. D.2.下圖為一個正四面體的側(cè)面展開圖,為的中點,則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.3.已知,則的大小關(guān)系為A. B. C. D.4.已知實數(shù),滿足約束條件,則目標(biāo)函數(shù)的最小值為A. B.C. D.5.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則6.為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進行指標(biāo)測驗(指標(biāo)值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學(xué)運算最強7.已知復(fù)數(shù)滿足,則=()A. B.C. D.8.若,則下列關(guān)系式正確的個數(shù)是()①②③④A.1 B.2 C.3 D.49.一個頻率分布表(樣本容量為)不小心被損壞了一部分,只記得樣本中數(shù)據(jù)在上的頻率為,則估計樣本在、內(nèi)的數(shù)據(jù)個數(shù)共有()A. B. C. D.10.已知函數(shù)與的圖象有一個橫坐標(biāo)為的交點,若函數(shù)的圖象的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋逗?,得到的函?shù)在有且僅有5個零點,則的取值范圍是()A. B.C. D.11.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.8412.已知,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則最小值為__________.14.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結(jié)果為的式子的序號是_____.15.如圖,棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內(nèi)作弧和,并將兩弧各五等分,分點依次為、、、、、以及、、、、、.一只螞蟻欲從點出發(fā),沿正方體的表面爬行至,則其爬行的最短距離為________.參考數(shù)據(jù):;;)16.函數(shù)在的零點個數(shù)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,且,(,且)(1)求數(shù)列的通項公式;(2)證明:當(dāng)時,18.(12分)如圖所示,在四棱錐中,平面,底面ABCD滿足AD∥BC,,,E為AD的中點,AC與BE的交點為O.(1)設(shè)H是線段BE上的動點,證明:三棱錐的體積是定值;(2)求四棱錐的體積;(3)求直線BC與平面PBD所成角的余弦值.19.(12分)如圖,D是在△ABC邊AC上的一點,△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.20.(12分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a21.(12分)百年大計,教育為本.某校積極響應(yīng)教育部號召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進行專項培訓(xùn).據(jù)統(tǒng)計有如下表格.(其中表示通過自主招生獲得降分資格的學(xué)生人數(shù),表示被清華、北大等名校錄取的學(xué)生人數(shù))年份(屆)2014201520162017201841495557638296108106123(1)通過畫散點圖發(fā)現(xiàn)與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(保留兩位有效數(shù)字)(2)若已知該校2019年通過自主招生獲得降分資格的學(xué)生人數(shù)為61人,預(yù)測2019年高考該??既嗣5娜藬?shù);(3)若從2014年和2018年考人名校的學(xué)生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進行演講,求進行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.參考公式:,參考數(shù)據(jù):,,,22.(10分)已知函數(shù).(1)當(dāng)時,解不等式;(2)設(shè)不等式的解集為,若,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
求出集合,然后進行并集的運算即可.【題目詳解】∵,,∴.故選:A.【題目點撥】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎(chǔ)題.2、C【解題分析】
將正四面體的展開圖還原為空間幾何體,三點重合,記作,取中點,連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【題目詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點重合,記作:則為中點,取中點,連接,設(shè)正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【題目點撥】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應(yīng)用,屬于中檔題.3、D【解題分析】
分析:由題意結(jié)合對數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)性和指數(shù)的性質(zhì)整理計算即可確定a,b,c的大小關(guān)系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項.點睛:對于指數(shù)冪的大小的比較,我們通常都是運用指數(shù)函數(shù)的單調(diào)性,但很多時候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進行比較.這就必須掌握一些特殊方法.在進行指數(shù)冪的大小比較時,若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進行判斷.對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準(zhǔn)確.4、B【解題分析】
作出不等式組對應(yīng)的平面區(qū)域,目標(biāo)函數(shù)的幾何意義為動點到定點的斜率,利用數(shù)形結(jié)合即可得到的最小值.【題目詳解】解:作出不等式組對應(yīng)的平面區(qū)域如圖:目標(biāo)函數(shù)的幾何意義為動點到定點的斜率,當(dāng)位于時,此時的斜率最小,此時.故選B.【題目點撥】本題主要考查線性規(guī)劃的應(yīng)用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.5、D【解題分析】
利用空間位置關(guān)系的判斷及性質(zhì)定理進行判斷.【題目詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.【題目點撥】本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識;考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.6、D【解題分析】
根據(jù)所給的雷達(dá)圖逐個選項分析即可.【題目詳解】對于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學(xué)建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數(shù)學(xué)運算為80分,不是最強的,故D錯誤;故選:D【題目點撥】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計算,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.7、B【解題分析】
利用復(fù)數(shù)的代數(shù)運算法則化簡即可得到結(jié)論.【題目詳解】由,得,所以,.故選:B.【題目點撥】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.8、D【解題分析】
a,b可看成是與和交點的橫坐標(biāo),畫出圖象,數(shù)形結(jié)合處理.【題目詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【題目點撥】本題考查利用函數(shù)圖象比較大小,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.9、B【解題分析】
計算出樣本在的數(shù)據(jù)個數(shù),再減去樣本在的數(shù)據(jù)個數(shù)即可得出結(jié)果.【題目詳解】由題意可知,樣本在的數(shù)據(jù)個數(shù)為,樣本在的數(shù)據(jù)個數(shù)為,因此,樣本在、內(nèi)的數(shù)據(jù)個數(shù)為.故選:B.【題目點撥】本題考查利用頻數(shù)分布表計算頻數(shù),要理解頻數(shù)、樣本容量與頻率三者之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.10、A【解題分析】
根據(jù)題意,,求出,所以,根據(jù)三角函數(shù)圖像平移伸縮,即可求出的取值范圍.【題目詳解】已知與的圖象有一個橫坐標(biāo)為的交點,則,,,,,若函數(shù)圖象的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼谋?,則,所以當(dāng)時,,在有且僅有5個零點,,.故選:A.【題目點撥】本題考查三角函數(shù)圖象的性質(zhì)、三角函數(shù)的平移伸縮以及零點個數(shù)問題,考查轉(zhuǎn)化思想和計算能力.11、B【解題分析】
畫出幾何體的直觀圖,計算表面積得到答案.【題目詳解】該幾何體的直觀圖如圖所示:故.故選:.【題目點撥】本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計算能力和空間想象能力.12、C【解題分析】
利用誘導(dǎo)公式得,,再利用倍角公式,即可得答案.【題目詳解】由可得,∴,∴.故選:C.【題目點撥】本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
首先整理所給的代數(shù)式,然后結(jié)合均值不等式的結(jié)論即可求得其最小值.【題目詳解】,結(jié)合可知原式,且,當(dāng)且僅當(dāng)時等號成立.即最小值為.【題目點撥】在應(yīng)用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤.14、①②③【解題分析】
由已知分別結(jié)合和差角的正切及正弦余弦公式進行化簡即可求解.【題目詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【題目點撥】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應(yīng)用,屬于中檔試題.15、【解題分析】
根據(jù)空間位置關(guān)系,將平面旋轉(zhuǎn)后使得各點在同一平面內(nèi),結(jié)合角的關(guān)系即可求得兩點間距離的三角函數(shù)表達(dá)式.根據(jù)所給參考數(shù)據(jù)即可得解.【題目詳解】棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內(nèi)作弧和.將平面繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;將平面繞旋轉(zhuǎn)至與平面共面的位置,將繞旋轉(zhuǎn)至與平面共面的位置,如下圖所示:則,所以;因為,且由誘導(dǎo)公式可得,所以最短距離為,故答案為:.【題目點撥】本題考查了空間幾何體中最短距離的求法,注意將空間幾何體展開至同一平面內(nèi)求解的方法,三角函數(shù)誘導(dǎo)公式的應(yīng)用,綜合性強,屬于難題.16、【解題分析】
求出的范圍,再由函數(shù)值為零,得到的取值可得零點個數(shù).【題目詳解】詳解:由題可知,或解得,或故有3個零點.【題目點撥】本題主要考查三角函數(shù)的性質(zhì)和函數(shù)的零點,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見證明【解題分析】
(1)由題意將遞推關(guān)系式整理為關(guān)于與的關(guān)系式,求得前n項和然后確定通項公式即可;(2)由題意結(jié)合通項公式的特征放縮之后裂項求和即可證得題中的不等式.【題目詳解】(1)由,得,即,所以數(shù)列是以為首項,以為公差的等差數(shù)列,所以,即,當(dāng)時,,當(dāng)時,,也滿足上式,所以;(2)當(dāng)時,,所以【題目點撥】給出與的遞推關(guān)系,求an,常用思路是:一是利用轉(zhuǎn)化為an的遞推關(guān)系,再求其通項公式;二是轉(zhuǎn)化為Sn的遞推關(guān)系,先求出Sn與n之間的關(guān)系,再求an.18、(1)證明見解析(2)(3)【解題分析】
(1)因為底面ABCD為梯形,且,所以四邊形BCDE為平行四邊形,則BE∥CD,又平面,平面,所以平面,又因為H為線段BE上的動點,的面積是定值,從而三棱錐的體積是定值.(2)因為平面,所以,結(jié)合BE∥CD,所以,又因為,,且E為AD的中點,所以四邊形ABCE為正方形,所以,結(jié)合,則平面,連接,則,因為平面,所以,因為,所以是等腰直角三角形,O為斜邊AC上的中點,所以,且,所以平面,所以PO是四棱錐的高,又因為梯形ABCD的面積為,在中,,所以.(3)以O(shè)為坐標(biāo)原點,建立空間直角坐標(biāo)系,如圖所示,則B(,0,0),C(0,,0),D(,,0),P(0,0,),則,設(shè)平面PBD的法向量為,則即則,令,得到,設(shè)BC與平面PBD所成的角為,則,所以,所以直線BC與平面PBD所成角的余弦值為.19、(Ⅰ);(Ⅱ)【解題分析】
(Ⅰ)利用三角形面積公式以及并結(jié)合正弦定理,可得結(jié)果.(Ⅱ)根據(jù),可得,然后使用余弦定理,可得結(jié)果.【題目詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.【題目點撥】本題考查三角形面積公式,正弦定理以及余弦定理的應(yīng)用,關(guān)鍵在于識記公式,屬中檔題.20、(I)an=2n-1,bn=【解題分析】
(I)直接利用等差數(shù)列,等比數(shù)列公式聯(lián)立方程計算得到答案.(II)n2【題目詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【題目點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 符號化課課程設(shè)計
- 2025-2030全球低溫柱溫箱行業(yè)調(diào)研及趨勢分析報告
- 顏色變變變課程設(shè)計
- 銑刀頭座體夾具課程設(shè)計
- 紅綠燈數(shù)字邏輯課程設(shè)計
- 幼兒園文案特色課程設(shè)計
- 網(wǎng)站課程設(shè)計助理
- 電工技術(shù)課程設(shè)計報告
- 電子秤設(shè)計課程設(shè)計
- 自控串聯(lián)校正課程設(shè)計
- 廣東省惠州市2024-2025學(xué)年高一上學(xué)期期末考試英語試題(含答案)
- 醫(yī)院骨科2025年帶教計劃(2篇)
- 環(huán)境保護應(yīng)急管理制度執(zhí)行細(xì)則
- 2024-2030年中國通航飛行服務(wù)站(FSS)行業(yè)發(fā)展模式規(guī)劃分析報告
- 機械制造企業(yè)風(fēng)險分級管控手冊
- 地系梁工程施工方案
- 藏文基礎(chǔ)-教你輕輕松松學(xué)藏語(西藏大學(xué))知到智慧樹章節(jié)答案
- 2024電子商務(wù)平臺用戶隱私保護協(xié)議3篇
- 安徽省蕪湖市2023-2024學(xué)年高一上學(xué)期期末考試 英語 含答案
- 醫(yī)學(xué)教程 常見體表腫瘤與腫塊課件
- 內(nèi)分泌系統(tǒng)異常與虛勞病關(guān)系
評論
0/150
提交評論