版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆福建省百校高三理零模試卷及答案版注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是第二象限的角,,則()A. B. C. D.2.已知復(fù)數(shù)滿(mǎn)足,(為虛數(shù)單位),則()A. B. C. D.33.下圖為一個(gè)正四面體的側(cè)面展開(kāi)圖,為的中點(diǎn),則在原正四面體中,直線(xiàn)與直線(xiàn)所成角的余弦值為()A. B.C. D.4.設(shè)且,則下列不等式成立的是()A. B. C. D.5.如圖,內(nèi)接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.6.如圖,在四邊形中,,,,,,則的長(zhǎng)度為()A. B.C. D.7.一個(gè)陶瓷圓盤(pán)的半徑為,中間有一個(gè)邊長(zhǎng)為的正方形花紋,向盤(pán)中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計(jì)圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.1478.已知非零向量,滿(mǎn)足,,則與的夾角為()A. B. C. D.9.已知函數(shù),若函數(shù)的圖象恒在軸的上方,則實(shí)數(shù)的取值范圍為()A. B. C. D.10.已知集合,集合,則().A. B.C. D.11.拋物線(xiàn)y2=ax(a>0)的準(zhǔn)線(xiàn)與雙曲線(xiàn)C:x28A.8 B.6 C.4 D.212.已知直線(xiàn)y=k(x﹣1)與拋物線(xiàn)C:y2=4x交于A,B兩點(diǎn),直線(xiàn)y=2k(x﹣2)與拋物線(xiàn)D:y2=8x交于M,N兩點(diǎn),設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣12二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線(xiàn)在點(diǎn)處的切線(xiàn)方程是_______.14.在矩形ABCD中,,,點(diǎn)E,F(xiàn)分別為BC,CD邊上動(dòng)點(diǎn),且滿(mǎn)足,則的最大值為_(kāi)_______.15.已知內(nèi)角的對(duì)邊分別為外接圓的面積為,則的面積為_(kāi)________.16.已知函數(shù),則________;滿(mǎn)足的的取值范圍為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中,角、、的對(duì)邊分別為、、,且.(1)若,,求的值;(2)若,求的值.18.(12分)某工廠(chǎng)生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠(chǎng)為提高產(chǎn)品聲譽(yù),要求在交付用戶(hù)前每件產(chǎn)品都通過(guò)合格檢驗(yàn),已知該工廠(chǎng)的檢驗(yàn)儀器一次最多可檢驗(yàn)件該產(chǎn)品,且每件產(chǎn)品檢驗(yàn)合格與否相互獨(dú)立.若每件產(chǎn)品均檢驗(yàn)一次,所需檢驗(yàn)費(fèi)用較多,該工廠(chǎng)提出以下檢驗(yàn)方案:將產(chǎn)品每個(gè)一組進(jìn)行分組檢驗(yàn),如果某一組產(chǎn)品檢驗(yàn)合格,則說(shuō)明該組內(nèi)產(chǎn)品均合格,若檢驗(yàn)不合格,則說(shuō)明該組內(nèi)有不合格產(chǎn)品,再對(duì)該組內(nèi)每一件產(chǎn)品單獨(dú)進(jìn)行檢驗(yàn),如此,每一組產(chǎn)品只需檢驗(yàn)次或次.設(shè)該工廠(chǎng)生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗(yàn)次數(shù)為.(1)求的分布列及其期望;(2)(i)試說(shuō)明,當(dāng)越小時(shí),該方案越合理,即所需平均檢驗(yàn)次數(shù)越少;(ii)當(dāng)時(shí),求使該方案最合理時(shí)的值及件該產(chǎn)品的平均檢驗(yàn)次數(shù).19.(12分)在①;②;③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中的橫線(xiàn)上,并解答相應(yīng)的問(wèn)題.在中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿(mǎn)足________________,,求的面積.20.(12分)已知凸邊形的面積為1,邊長(zhǎng),,其內(nèi)部一點(diǎn)到邊的距離分別為.求證:.21.(12分)某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”、“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記分,“不合格”記分.現(xiàn)隨機(jī)抽取部分學(xué)生的成績(jī),統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下所示:等級(jí)不合格合格得分頻數(shù)624(Ⅰ)若測(cè)試的同學(xué)中,分?jǐn)?shù)段內(nèi)女生的人數(shù)分別為,完成列聯(lián)表,并判斷:是否有以上的把握認(rèn)為性別與安全意識(shí)有關(guān)?是否合格性別不合格合格總計(jì)男生女生總計(jì)(Ⅱ)用分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中,共選取人進(jìn)行座談,現(xiàn)再?gòu)倪@人中任選人,記所選人的量化總分為,求的分布列及數(shù)學(xué)期望;(Ⅲ)某評(píng)估機(jī)構(gòu)以指標(biāo)(,其中表示的方差)來(lái)評(píng)估該校安全教育活動(dòng)的成效,若,則認(rèn)定教育活動(dòng)是有效的;否則認(rèn)定教育活動(dòng)無(wú)效,應(yīng)調(diào)整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案?附表及公式:,其中.22.(10分)在四棱錐中,底面為直角梯形,,面.(1)在線(xiàn)段上是否存在點(diǎn),使面,說(shuō)明理由;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】
利用誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系求出,再利用二倍角的正弦公式代入求解即可.【題目詳解】因?yàn)?由誘導(dǎo)公式可得,,即,因?yàn)?所以,由二倍角的正弦公式可得,,所以.故選:D【題目點(diǎn)撥】本題考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和二倍角的正弦公式;考查運(yùn)算求解能力和知識(shí)的綜合運(yùn)用能力;屬于中檔題.2、A【解題分析】,故,故選A.3、C【解題分析】
將正四面體的展開(kāi)圖還原為空間幾何體,三點(diǎn)重合,記作,取中點(diǎn),連接,即為與直線(xiàn)所成的角,表示出三角形的三條邊長(zhǎng),用余弦定理即可求得.【題目詳解】將展開(kāi)的正四面體折疊,可得原正四面體如下圖所示,其中三點(diǎn)重合,記作:則為中點(diǎn),取中點(diǎn),連接,設(shè)正四面體的棱長(zhǎng)均為,由中位線(xiàn)定理可得且,所以即為與直線(xiàn)所成的角,,由余弦定理可得,所以直線(xiàn)與直線(xiàn)所成角的余弦值為,故選:C.【題目點(diǎn)撥】本題考查了空間幾何體中異面直線(xiàn)的夾角,將展開(kāi)圖折疊成空間幾何體,余弦定理解三角形的應(yīng)用,屬于中檔題.4、A【解題分析】項(xiàng),由得到,則,故項(xiàng)正確;項(xiàng),當(dāng)時(shí),該不等式不成立,故項(xiàng)錯(cuò)誤;項(xiàng),當(dāng),時(shí),,即不等式不成立,故項(xiàng)錯(cuò)誤;項(xiàng),當(dāng),時(shí),,即不等式不成立,故項(xiàng)錯(cuò)誤.綜上所述,故選.5、B【解題分析】
根據(jù)已知證明平面,只要設(shè),則,從而可得體積,利用基本不等式可得最大值.【題目詳解】因?yàn)椋运倪呅螢槠叫兴倪呅?又因?yàn)槠矫?,平面,所以平面,所以平?在直角三角形中,,設(shè),則,所以,所以.又因?yàn)椋?dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以.故選:B.【題目點(diǎn)撥】本題考查求棱錐體積的最大值.解題方法是:首先證明線(xiàn)面垂直同,得棱錐的高,然后設(shè)出底面三角形一邊長(zhǎng)為,用建立體積與邊長(zhǎng)的函數(shù)關(guān)系,由基本不等式得最值,或由函數(shù)的性質(zhì)得最值.6、D【解題分析】
設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【題目詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【題目點(diǎn)撥】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.7、B【解題分析】
結(jié)合隨機(jī)模擬概念和幾何概型公式計(jì)算即可【題目詳解】如圖,由幾何概型公式可知:.故選:B【題目點(diǎn)撥】本題考查隨機(jī)模擬的概念和幾何概型,屬于基礎(chǔ)題8、B【解題分析】
由平面向量垂直的數(shù)量積關(guān)系化簡(jiǎn),即可由平面向量數(shù)量積定義求得與的夾角.【題目詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【題目點(diǎn)撥】本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.9、B【解題分析】
函數(shù)的圖象恒在軸的上方,在上恒成立.即,即函數(shù)的圖象在直線(xiàn)上方,先求出兩者相切時(shí)的值,然后根據(jù)變化時(shí),函數(shù)的變化趨勢(shì),從而得的范圍.【題目詳解】由題在上恒成立.即,的圖象永遠(yuǎn)在的上方,設(shè)與的切點(diǎn),則,解得,易知越小,圖象越靠上,所以.故選:B.【題目點(diǎn)撥】本題考查函數(shù)圖象與不等式恒成立的關(guān)系,考查轉(zhuǎn)化與化歸思想,首先函數(shù)圖象轉(zhuǎn)化為不等式恒成立,然后不等式恒成立再轉(zhuǎn)化為函數(shù)圖象,最后由極限位置直線(xiàn)與函數(shù)圖象相切得出參數(shù)的值,然后得出參數(shù)范圍.10、A【解題分析】
算出集合A、B及,再求補(bǔ)集即可.【題目詳解】由,得,所以,又,所以,故或.故選:A.【題目點(diǎn)撥】本題考查集合的交集、補(bǔ)集運(yùn)算,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.11、A【解題分析】
求得拋物線(xiàn)的準(zhǔn)線(xiàn)方程和雙曲線(xiàn)的漸近線(xiàn)方程,解得兩交點(diǎn),由三角形的面積公式,計(jì)算即可得到所求值.【題目詳解】拋物線(xiàn)y2=ax(a>0)的準(zhǔn)線(xiàn)為x=-a4,雙曲線(xiàn)C:x28-y24【題目點(diǎn)撥】本題考查三角形的面積的求法,注意運(yùn)用拋物線(xiàn)的準(zhǔn)線(xiàn)方程和雙曲線(xiàn)的漸近線(xiàn)方程,考查運(yùn)算能力,屬于基礎(chǔ)題.12、D【解題分析】
分別聯(lián)立直線(xiàn)與拋物線(xiàn)的方程,利用韋達(dá)定理,可得,,然后計(jì)算,可得結(jié)果.【題目詳解】設(shè),聯(lián)立則,因?yàn)橹本€(xiàn)經(jīng)過(guò)C的焦點(diǎn),所以.同理可得,所以故選:D.【題目點(diǎn)撥】本題考查的是直線(xiàn)與拋物線(xiàn)的交點(diǎn)問(wèn)題,運(yùn)用拋物線(xiàn)的焦點(diǎn)弦求參數(shù),屬基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
求導(dǎo),x=0代入求k,點(diǎn)斜式求切線(xiàn)方程即可【題目詳解】則又故切線(xiàn)方程為y=x+1故答案為y=x+1【題目點(diǎn)撥】本題考查切線(xiàn)方程,求導(dǎo)法則及運(yùn)算,考查直線(xiàn)方程,考查計(jì)算能力,是基礎(chǔ)題14、【解題分析】
利用平面直角坐標(biāo)系,設(shè)出點(diǎn)E,F(xiàn)的坐標(biāo),由可得,利用數(shù)量積運(yùn)算求得,再利用線(xiàn)性規(guī)劃的知識(shí)求出的最大值.【題目詳解】建立平面直角坐標(biāo)系,如圖(1)所示:設(shè),,,即,又,令,其中,畫(huà)出圖形,如圖(2)所示:當(dāng)直線(xiàn)經(jīng)過(guò)點(diǎn)時(shí),取得最大值.故答案為:【題目點(diǎn)撥】本題考查了向量數(shù)量積的坐標(biāo)運(yùn)算、簡(jiǎn)單的線(xiàn)性規(guī)劃問(wèn)題,解題的關(guān)鍵是建立恰當(dāng)?shù)淖鴺?biāo)系,屬于基礎(chǔ)題.15、【解題分析】
由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內(nèi)角,從而有,于是可得三角形邊長(zhǎng),可得面積.【題目詳解】設(shè)外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【題目點(diǎn)撥】本題考查正弦定理,利用正弦定理求出三角形的內(nèi)角,然后可得邊長(zhǎng),從而得面積,掌握正弦定理是解題關(guān)鍵.16、【解題分析】
首先由分段函數(shù)的解析式代入求值即可得到,分和兩種情況討論可得;【題目詳解】解:因?yàn)?,所以,∵,∴?dāng)時(shí),滿(mǎn)足題意,∴;當(dāng)時(shí),由,解得.綜合可知:滿(mǎn)足的的取值范圍為.故答案為:;.【題目點(diǎn)撥】本題考查分段函數(shù)的性質(zhì)的應(yīng)用,分類(lèi)討論思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解題分析】
(1)利用余弦定理得出關(guān)于的二次方程,結(jié)合,可求出的值;(2)利用兩角和的余弦公式以及誘導(dǎo)公式可求出的值,利用同角三角函數(shù)的基本關(guān)系求出的值,然后利用二倍角的正切公式可求出的值.【題目詳解】(1)在中,由余弦定理得,,即,解得或(舍),所以;(2)由及得,,所以,又因?yàn)椋裕瑥亩?,所?【題目點(diǎn)撥】本題考查利用余弦定理解三角形,同時(shí)也考查了兩角和的余弦公式、同角三角函數(shù)的基本關(guān)系以及二倍角公式求值,考查計(jì)算能力,屬于中等題.18、(1)見(jiàn)解析,(2)(i)見(jiàn)解析(ii)時(shí)平均檢驗(yàn)次數(shù)最少,約為594次.【解題分析】
(1)由題意可得,的可能取值為和,分別求出其概率即可求出分布列,進(jìn)而可求出期望.(2)(i)由記,根據(jù)函數(shù)的單調(diào)性即可證出;記,當(dāng)且取最小值時(shí),該方案最合理,對(duì)進(jìn)行賦值即可求解.【題目詳解】(1)由題,的可能取值為和,故的分布列為由記,因?yàn)?,所以在上單調(diào)遞增,故越小,越小,即所需平均檢驗(yàn)次數(shù)越少,該方案越合理記當(dāng)且取最小值時(shí),該方案最合理,因?yàn)?,,所以時(shí)平均檢驗(yàn)次數(shù)最少,約為次.【題目點(diǎn)撥】本題考查了離散型隨機(jī)變量的分布列、數(shù)學(xué)期望,考查了分析問(wèn)題、解決問(wèn)題的能力,屬于中檔題.19、橫線(xiàn)處任填一個(gè)都可以,面積為.【解題分析】
無(wú)論選哪一個(gè),都先由正弦定理化邊為角后,由誘導(dǎo)公式,展開(kāi)后,可求得角,再由余弦定理求得,從而易求得三角形面積.【題目詳解】在橫線(xiàn)上填寫(xiě)“”.解:由正弦定理,得.由,得.由,得.所以.又(若,則這與矛盾),所以.又,得.由余弦定理及,得,即.將代入,解得.所以.在橫線(xiàn)上填寫(xiě)“”.解:由及正弦定理,得.又,所以有.因?yàn)?,所?從而有.又,所以由余弦定理及,得即.將代入,解得.所以.在橫線(xiàn)上填寫(xiě)“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.將代入,解得.所以.【題目點(diǎn)撥】本題考查三角形面積公式,考查正弦定理、余弦定理,兩角和的正弦公式等,正弦定理進(jìn)行邊角轉(zhuǎn)換,求三角形面積時(shí),①若三角形中已知一個(gè)角(角的大小或該角的正、余弦值),結(jié)合題意求解這個(gè)角的兩邊或該角的兩邊之積,代入公式求面積;②若已知三角形的三邊,可先求其一個(gè)角的余弦值,再求其正弦值,代入公式求面積,總之,結(jié)合圖形恰當(dāng)選擇面積公式是解題的關(guān)鍵.20、證明見(jiàn)解析【解題分析】
由已知,易得,所以利用柯西不等式和基本不等式即可證明.【題目詳解】因?yàn)橥惯呅蔚拿娣e為1,所以,所以(由柯西不等式得)(由均值不等式得)【題目點(diǎn)撥】本題考查利用柯西不等式、基本不等式證明不等式的問(wèn)題,考查學(xué)生對(duì)不等式靈活運(yùn)用的能力,是一道容易題.21、(Ⅰ)詳見(jiàn)解析;(Ⅱ)詳見(jiàn)解析;(Ⅲ)不需要調(diào)整安全教育方案.【解題分析】
(I)根據(jù)題目所給數(shù)據(jù)填寫(xiě)好列聯(lián)表,計(jì)算出的值,由此判斷出在犯錯(cuò)誤概率不超過(guò)的前提下,不能認(rèn)為性別與安全測(cè)試是否合格有關(guān).(II)利用超幾何分布的計(jì)算公式,計(jì)算出的分布列并求得數(shù)學(xué)期望.(III)由(II)中數(shù)據(jù),計(jì)算出,進(jìn)而求得的值,從而得出該校的安全教育活動(dòng)是有效的,不需要調(diào)整安全
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度養(yǎng)殖場(chǎng)節(jié)能減排與綠色低碳合作協(xié)議書(shū)3篇
- 二零二五年度航空航天器加工合作協(xié)議2篇
- 2025陶瓷現(xiàn)匯外貿(mào)合同書(shū)
- 二零二五年度籃球運(yùn)動(dòng)員長(zhǎng)期保障合同3篇
- 2025年度農(nóng)村私人魚(yú)塘承包合同附漁業(yè)環(huán)保責(zé)任承諾書(shū)
- 二零二五年度汽車(chē)維修行業(yè)員工薪酬福利合同范本3篇
- 2025年度養(yǎng)殖土地租賃及農(nóng)業(yè)品牌建設(shè)合作協(xié)議3篇
- 2025年度農(nóng)機(jī)租賃與農(nóng)業(yè)廢棄物資源回收利用合作協(xié)議3篇
- 2025年度新能源充電樁建設(shè)公司成立協(xié)議書(shū)范本3篇
- 2025年度年度農(nóng)機(jī)租賃與農(nóng)業(yè)科技創(chuàng)新合作協(xié)議3篇
- 廉政法規(guī)知識(shí)測(cè)試及答案
- 形式與政策學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 期末考試-2024-2025學(xué)年語(yǔ)文四年級(jí)上冊(cè)統(tǒng)編版
- 浙江省寧波市慈溪市2022-2023學(xué)年上學(xué)期八年級(jí)科學(xué)期末試卷
- JGJ 305-2013 建筑施工升降設(shè)備設(shè)施檢驗(yàn)標(biāo)準(zhǔn)
- 橋區(qū)巖土工程勘察報(bào)告
- 【鄉(xiāng)土資源在初中“道德與法治”課程應(yīng)用情況調(diào)查研究報(bào)告11000字(論文)】
- 《城市軌道交通概論》 課件 5-22 乘客信息系統(tǒng)結(jié)構(gòu)及功能
- 2024年荊門(mén)中荊投資控股集團(tuán)招聘筆試沖刺題(帶答案解析)
- 惡性綜合征課件
- 2024年中考物理復(fù)習(xí)精講練(全國(guó))專(zhuān)題22 計(jì)算題(力熱電綜合)(講練)【學(xué)生卷】
評(píng)論
0/150
提交評(píng)論