2024屆廣東佛山市禪城區(qū)高三數(shù)學(xué)試題開學(xué)統(tǒng)練試題_第1頁
2024屆廣東佛山市禪城區(qū)高三數(shù)學(xué)試題開學(xué)統(tǒng)練試題_第2頁
2024屆廣東佛山市禪城區(qū)高三數(shù)學(xué)試題開學(xué)統(tǒng)練試題_第3頁
2024屆廣東佛山市禪城區(qū)高三數(shù)學(xué)試題開學(xué)統(tǒng)練試題_第4頁
2024屆廣東佛山市禪城區(qū)高三數(shù)學(xué)試題開學(xué)統(tǒng)練試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆廣東佛山市禪城區(qū)高三數(shù)學(xué)試題開學(xué)統(tǒng)練試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)fxA. B.C. D.2.定義域?yàn)镽的偶函數(shù)滿足任意,有,且當(dāng)時(shí),.若函數(shù)至少有三個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.3.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個(gè)幾何體的體積是()A. B. C.16 D.324.已知函數(shù)若對(duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,則實(shí)數(shù)的取值范圍是()A. B. C. D.5.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.56.雙曲線的漸近線方程為()A. B.C. D.7.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}8.已知函數(shù)是奇函數(shù),則的值為()A.-10 B.-9 C.-7 D.19.已知函數(shù),關(guān)于的方程R)有四個(gè)相異的實(shí)數(shù)根,則的取值范圍是(

)A. B. C. D.10.復(fù)數(shù)滿足,則()A. B. C. D.11.復(fù)數(shù)(i為虛數(shù)單位)的共軛復(fù)數(shù)是A.1+i B.1?i C.?1+i D.?1?i12.為研究語文成績和英語成績之間是否具有線性相關(guān)關(guān)系,統(tǒng)計(jì)兩科成績得到如圖所示的散點(diǎn)圖(兩坐標(biāo)軸單位長度相同),用回歸直線近似地刻畫其相關(guān)關(guān)系,根據(jù)圖形,以下結(jié)論最有可能成立的是()A.線性相關(guān)關(guān)系較強(qiáng),b的值為1.25B.線性相關(guān)關(guān)系較強(qiáng),b的值為0.83C.線性相關(guān)關(guān)系較強(qiáng),b的值為-0.87D.線性相關(guān)關(guān)系太弱,無研究價(jià)值二、填空題:本題共4小題,每小題5分,共20分。13.如圖,是圓的直徑,弦的延長線相交于點(diǎn)垂直的延長線于點(diǎn).求證:14.?dāng)?shù)列的前項(xiàng)和為,則數(shù)列的前項(xiàng)和_____.15.設(shè)全集,,,則______.16.設(shè)集合,(其中e是自然對(duì)數(shù)的底數(shù)),且,則滿足條件的實(shí)數(shù)a的個(gè)數(shù)為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某校共有學(xué)生2000人,其中男生900人,女生1100人,為了調(diào)查該校學(xué)生每周平均體育鍛煉時(shí)間,采用分層抽樣的方法收集該校100名學(xué)生每周平均體育鍛煉時(shí)間(單位:小時(shí)).(1)應(yīng)抽查男生與女生各多少人?(2)根據(jù)收集100人的樣本數(shù)據(jù),得到學(xué)生每周平均體育鍛煉時(shí)間的頻率分布表:時(shí)間(小時(shí))[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數(shù)據(jù)中有38名男學(xué)生平均每周課外體育鍛煉時(shí)間超過2小時(shí),請(qǐng)完成每周平均體育鍛煉時(shí)間與性別的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān)”?男生女生總計(jì)每周平均體育鍛煉時(shí)間不超過2小時(shí)每周平均體育鍛煉時(shí)間超過2小時(shí)總計(jì)附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.87918.(12分)在中,角的對(duì)邊分別為,且.(1)求角的大小;(2)若,求邊上的高.19.(12分)已知數(shù)列和滿足,,,,.(Ⅰ)求與;(Ⅱ)記數(shù)列的前項(xiàng)和為,且,若對(duì),恒成立,求正整數(shù)的值.20.(12分)如圖,在平面直角坐標(biāo)系中,已知圓C:,橢圓E:()的右頂點(diǎn)A在圓C上,右準(zhǔn)線與圓C相切.(1)求橢圓E的方程;(2)設(shè)過點(diǎn)A的直線l與圓C相交于另一點(diǎn)M,與橢圓E相交于另一點(diǎn)N.當(dāng)時(shí),求直線l的方程.21.(12分)[選修4-5:不等式選講]設(shè)函數(shù).(1)求不等式的解集;(2)已知關(guān)于的不等式在上有解,求實(shí)數(shù)的取值范圍.22.(10分)已知,.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)的三個(gè)內(nèi)角、、所對(duì)邊分別為、、,若且,求面積的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】

由f12=e-14>0排除選項(xiàng)D;【題目詳解】由f12=e-14>0,可排除選項(xiàng)D,f-1=-e【題目點(diǎn)撥】本題通過對(duì)多個(gè)圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點(diǎn)是綜合性較強(qiáng)、考查知識(shí)點(diǎn)較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點(diǎn)以及x→02、B【解題分析】

由題意可得的周期為,當(dāng)時(shí),,令,則的圖像和的圖像至少有個(gè)交點(diǎn),畫出圖像,數(shù)形結(jié)合,根據(jù),求得的取值范圍.【題目詳解】是定義域?yàn)镽的偶函數(shù),滿足任意,,令,又,為周期為的偶函數(shù),當(dāng)時(shí),,當(dāng),當(dāng),作出圖像,如下圖所示:函數(shù)至少有三個(gè)零點(diǎn),則的圖像和的圖像至少有個(gè)交點(diǎn),,若,的圖像和的圖像只有1個(gè)交點(diǎn),不合題意,所以,的圖像和的圖像至少有個(gè)交點(diǎn),則有,即,.故選:B.【題目點(diǎn)撥】本題考查函數(shù)周期性及其應(yīng)用,解題過程中用到了數(shù)形結(jié)合方法,這也是高考常考的熱點(diǎn)問題,屬于中檔題.3、A【解題分析】幾何體為一個(gè)三棱錐,高為4,底面為一個(gè)等腰直角三角形,直角邊長為4,所以體積是,選A.4、C【解題分析】分析:先求導(dǎo),再對(duì)a分類討論求函數(shù)的單調(diào)區(qū)間,再畫圖分析轉(zhuǎn)化對(duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,得到關(guān)于a的不等式組,再解不等式組得到實(shí)數(shù)a的取值范圍.詳解:由題得.當(dāng)a<1時(shí),,所以函數(shù)f(x)在單調(diào)遞減,因?yàn)閷?duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,所以故a≥1,與a<1矛盾,故a<1矛盾.當(dāng)1≤a<e時(shí),函數(shù)f(x)在[0,lna]單調(diào)遞增,在(lna,1]單調(diào)遞減.所以因?yàn)閷?duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,所以即令,所以所以函數(shù)g(a)在(1,e)上單調(diào)遞減,所以,所以當(dāng)1≤a<e時(shí),滿足題意.當(dāng)a時(shí),函數(shù)f(x)在(0,1)單調(diào)遞增,因?yàn)閷?duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,故1+1,所以故綜上所述,a∈.故選C.點(diǎn)睛:本題的難點(diǎn)在于“對(duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對(duì)稱性、最值、極值等)來分析解答問題.本題就是把這個(gè)條件和函數(shù)的單調(diào)性和最值聯(lián)系起來,完成了數(shù)學(xué)問題的等價(jià)轉(zhuǎn)化,找到了問題的突破口.5、D【解題分析】

利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【題目詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D【題目點(diǎn)撥】本題考查了線性回歸方程過樣本中心點(diǎn)的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.6、A【解題分析】

將雙曲線方程化為標(biāo)準(zhǔn)方程為,其漸近線方程為,化簡(jiǎn)整理即得漸近線方程.【題目詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【題目點(diǎn)撥】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程,雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用.7、C【解題分析】

根據(jù)集合的并集、補(bǔ)集的概念,可得結(jié)果.【題目詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【題目點(diǎn)撥】本題考查的是集合并集,補(bǔ)集的概念,屬基礎(chǔ)題.8、B【解題分析】

根據(jù)分段函數(shù)表達(dá)式,先求得的值,然后結(jié)合的奇偶性,求得的值.【題目詳解】因?yàn)楹瘮?shù)是奇函數(shù),所以,.故選:B【題目點(diǎn)撥】本題主要考查分段函數(shù)的解析式、分段函數(shù)求函數(shù)值,考查數(shù)形結(jié)合思想.意在考查學(xué)生的運(yùn)算能力,分析問題、解決問題的能力.9、A【解題分析】=,當(dāng)時(shí)時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,且當(dāng),當(dāng),

當(dāng)時(shí),恒成立,時(shí),單調(diào)遞增且,方程R)有四個(gè)相異的實(shí)數(shù)根.令=則,,即.10、C【解題分析】

利用復(fù)數(shù)模與除法運(yùn)算即可得到結(jié)果.【題目詳解】解:,故選:C【題目點(diǎn)撥】本題考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模,考查計(jì)算能力,屬于基礎(chǔ)題.11、B【解題分析】分析:化簡(jiǎn)已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得.詳解:化簡(jiǎn)可得z=∴z的共軛復(fù)數(shù)為1﹣i.故選B.點(diǎn)睛:本題考查復(fù)數(shù)的代數(shù)形式的運(yùn)算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題.12、B【解題分析】

根據(jù)散點(diǎn)圖呈現(xiàn)的特點(diǎn)可以看出,二者具有相關(guān)關(guān)系,且斜率小于1.【題目詳解】散點(diǎn)圖里變量的對(duì)應(yīng)點(diǎn)分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強(qiáng)的線性相關(guān)關(guān)系,且直線斜率小于1,故選B.【題目點(diǎn)撥】本題主要考查散點(diǎn)圖的理解,側(cè)重考查讀圖識(shí)圖能力和邏輯推理的核心素養(yǎng).二、填空題:本題共4小題,每小題5分,共20分。13、證明見解析.【解題分析】試題分析:四點(diǎn)共圓,所以,又△∽△,所以,即,得證.試題解析:A.連接,因?yàn)闉閳A的直徑,所以,又,則四點(diǎn)共圓,所以.又△∽△,所以,即,∴.14、【解題分析】

解:兩式作差,得,經(jīng)過檢驗(yàn)得出數(shù)列的通項(xiàng)公式,進(jìn)而求得的通項(xiàng)公式,裂項(xiàng)相消求和即可.【題目詳解】解:兩式作差,得化簡(jiǎn)得,檢驗(yàn):當(dāng)n=1時(shí),,所以數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列;,,令故填:.【題目點(diǎn)撥】本題考查求數(shù)列的通項(xiàng)公式,裂項(xiàng)相消求數(shù)列的前n項(xiàng)和,解題過程中需要注意n的范圍以及對(duì)特殊項(xiàng)的討論,側(cè)重考查運(yùn)算能力.15、【解題分析】

先求出集合,,然后根據(jù)交集、補(bǔ)集的定義求解即可.【題目詳解】解:,或;∴;∴.故答案為:.【題目點(diǎn)撥】本題主要考查集合的交集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.16、【解題分析】

可看出,這樣根據(jù)即可得出,從而得出滿足條件的實(shí)數(shù)的個(gè)數(shù)為1.【題目詳解】解:,或,在同一平面直角坐標(biāo)系中畫出函數(shù)與的圖象,由圖可知與無交點(diǎn),無解,則滿足條件的實(shí)數(shù)的個(gè)數(shù)為.故答案為:.【題目點(diǎn)撥】考查列舉法的定義,交集的定義及運(yùn)算,以及知道方程無解,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)男生人數(shù)為人,女生人數(shù)55人.(2)列聯(lián)表答案見解析,有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān).【解題分析】

(1)求出男女比例,按比例分配即可;(2)根據(jù)題意結(jié)合頻率分布表,先求出二聯(lián)表中數(shù)值,再結(jié)合公式計(jì)算,利用表格數(shù)據(jù)對(duì)比判斷即可【題目詳解】(1)因?yàn)槟猩藬?shù):女生人數(shù)=900:1100=9:11,所以男生人數(shù)為,女生人數(shù)100﹣45=55人,(2)由頻率頻率直方圖可知學(xué)生每周平均體育鍛煉時(shí)間超過2小時(shí)的人數(shù)為:(1×0.3+1×0.25+1×0.15+1×0.05)×100=75人,每周平均體育鍛煉時(shí)間超過2小時(shí)的女生人數(shù)為37人,聯(lián)表如下:男生女生總計(jì)每周平均體育鍛煉時(shí)間不超過2小時(shí)71825每周平均體育鍛煉時(shí)間超過2小時(shí)383775總計(jì)4555100因?yàn)?.892>3.841,所以有95%的把握認(rèn)為“該校學(xué)生的每周平均體育鍛煉時(shí)間與性別有關(guān).【題目點(diǎn)撥】本題考查分層抽樣,獨(dú)立性檢驗(yàn),熟記公式,正確計(jì)算是關(guān)鍵,屬于中檔題.18、(1);(2)【解題分析】

(1)利用正弦定理將邊化成角,可得,展開并整理可得,從而可求出角;(2)由余弦定理得,進(jìn)而可得,由,可求出的值,設(shè)邊上的高為,可得的面積為,從而可求出.【題目詳解】(1)由題意,由正弦定理得.因?yàn)椋?,所以,展開得,整理得.因?yàn)?,所以,故,?(2)由余弦定理得,則,得,故,故的面積為.設(shè)邊上的高為,有,故,所以邊上的高為.【題目點(diǎn)撥】本題考查正弦、余弦定理在解三角形中的應(yīng)用,考查三角形的面積公式的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于中檔題.19、(Ⅰ),;(Ⅱ)1【解題分析】

(Ⅰ)易得為等比數(shù)列,再利用前項(xiàng)和與通項(xiàng)的關(guān)系求解的通項(xiàng)公式即可.(Ⅱ)由題可知要求的最小值,再分析的正負(fù)即可得隨的增大而增大再判定可知即可.【題目詳解】(Ⅰ)因?yàn)?故是以為首項(xiàng),2為公比的等比數(shù)列,故.又當(dāng)時(shí),,解得.當(dāng)時(shí),…①…②①-②有,即.當(dāng)時(shí)也滿足.故為常數(shù)列,所以.即.故,(Ⅱ)因?yàn)閷?duì),恒成立.故只需求的最小值即可.設(shè),則,又,又當(dāng)時(shí),時(shí).當(dāng)時(shí),因?yàn)?故.綜上可知.故隨著的增大而增大,故,故【題目點(diǎn)撥】本題主要考查了根據(jù)數(shù)列的遞推公式求解通項(xiàng)公式的方法,同時(shí)也考查了根據(jù)數(shù)列的增減性判斷最值的問題,需要根據(jù)題意求解的通項(xiàng),并根據(jù)二項(xiàng)式定理分析其正負(fù),從而得到最小項(xiàng).屬于難題.20、(1)(2)或.【解題分析】

(1)圓的方程已知,根據(jù)條件列出方程組,解方程即得;(2)設(shè),,顯然直線l的斜率存在,方法一:設(shè)直線l的方程為:,將直線方程和橢圓方程聯(lián)立,消去,可得,同理直線方程和圓方程聯(lián)立,可得,再由可解得,即得;方法二:設(shè)直線l的方程為:,與橢圓方程聯(lián)立,可得,將其與圓方程聯(lián)立,可得,由可解得,即得.【題目詳解】(1)記橢圓E的焦距為().右頂點(diǎn)在圓C上,右準(zhǔn)線與圓C:相切.解得,,橢圓方程為:.(2)法1:設(shè),,顯然直線l的斜率存在,設(shè)直線l的方程為:.直線方程和橢圓方程聯(lián)立,由方程組消去y得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論