河南省永城市實驗高級中學2024屆高三高考押題卷:數(shù)學試題_第1頁
河南省永城市實驗高級中學2024屆高三高考押題卷:數(shù)學試題_第2頁
河南省永城市實驗高級中學2024屆高三高考押題卷:數(shù)學試題_第3頁
河南省永城市實驗高級中學2024屆高三高考押題卷:數(shù)學試題_第4頁
河南省永城市實驗高級中學2024屆高三高考押題卷:數(shù)學試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省永城市實驗高級中學2024屆高三高考押題卷:數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知關(guān)于的方程在區(qū)間上有兩個根,,且,則實數(shù)的取值范圍是()A. B. C. D.2.已知命題,,則是()A., B.,.C., D.,.3.已知全集,則集合的子集個數(shù)為()A. B. C. D.4.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.5.已知,,則等于().A. B. C. D.6.小張家訂了一份報紙,送報人可能在早上之間把報送到小張家,小張離開家去工作的時間在早上之間.用表示事件:“小張在離開家前能得到報紙”,設(shè)送報人到達的時間為,小張離開家的時間為,看成平面中的點,則用幾何概型的公式得到事件的概率等于()A. B. C. D.7.已知等差數(shù)列中,則()A.10 B.16 C.20 D.248.在三棱錐中,,,,,點到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.9.已知若(1-ai)(3+2i)為純虛數(shù),則a的值為()A. B. C. D.10.年部分省市將實行“”的新高考模式,即語文、數(shù)學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B.C. D.11.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直12.雙曲線的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,則a1=_____,a1+a2+…+a5=____14.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點為P,若|FP|=5,則點F到雙曲線的漸近線的距離為_____.15.已知角的終邊過點,則______.16.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若正數(shù)、滿足,求證:.18.(12分)已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)判斷函數(shù)的零點個數(shù).19.(12分)橢圓:()的離心率為,它的四個頂點構(gòu)成的四邊形面積為.(1)求橢圓的方程;(2)設(shè)是直線上任意一點,過點作圓的兩條切線,切點分別為,,求證:直線恒過一個定點.20.(12分)如圖,矩形和梯形所在的平面互相垂直,,,.(1)若為的中點,求證:平面;(2)若,求四棱錐的體積.21.(12分)等差數(shù)列中,,,分別是下表第一、二、三行中的某一個數(shù),且其中的任何兩個數(shù)不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請選擇一個可能的組合,并求數(shù)列的通項公式;(2)記(1)中您選擇的的前項和為,判斷是否存在正整數(shù),使得,,成等比數(shù)列,若有,請求出的值;若沒有,請說明理由.22.(10分)為了保障全國第四次經(jīng)濟普查順利進行,國家統(tǒng)計局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū),在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記,由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經(jīng)驗,在某普查小區(qū),共有50家企事業(yè)單位,150家個體經(jīng)營戶,普查情況如下表所示:普查對象類別順利不順利合計企事業(yè)單位401050個體經(jīng)營戶10050150合計14060200(1)寫出選擇5個國家綜合試點地區(qū)采用的抽樣方法;(2)根據(jù)列聯(lián)表判斷是否有的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”;(3)以該小區(qū)的個體經(jīng)營戶為樣本,頻率作為概率,從全國個體經(jīng)營戶中隨機選擇3家作為普查對象,入戶登記順利的對象數(shù)記為,寫出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

先利用三角恒等變換將題中的方程化簡,構(gòu)造新的函數(shù),將方程的解的問題轉(zhuǎn)化為函數(shù)圖象的交點問題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【題目詳解】由題化簡得,,作出的圖象,又由易知.故選:C.【題目點撥】本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.2、B【解題分析】

根據(jù)全稱命題的否定為特稱命題,得到結(jié)果.【題目詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項:【題目點撥】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.3、C【解題分析】

先求B.再求,求得則子集個數(shù)可求【題目詳解】由題=,則集合,故其子集個數(shù)為故選C【題目點撥】此題考查了交、并、補集的混合運算及子集個數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題4、B【解題分析】

選B.考點:圓心坐標5、B【解題分析】

由已知條件利用誘導公式得,再利用三角函數(shù)的平方關(guān)系和象限角的符號,即可得到答案.【題目詳解】由題意得,又,所以,結(jié)合解得,所以,故選B.【題目點撥】本題考查三角函數(shù)的誘導公式、同角三角函數(shù)的平方關(guān)系以及三角函數(shù)的符號與位置關(guān)系,屬于基礎(chǔ)題.6、D【解題分析】

這是幾何概型,畫出圖形,利用面積比即可求解.【題目詳解】解:事件發(fā)生,需滿足,即事件應位于五邊形內(nèi),作圖如下:故選:D【題目點撥】考查幾何概型,是基礎(chǔ)題.7、C【解題分析】

根據(jù)等差數(shù)列性質(zhì)得到,再計算得到答案.【題目詳解】已知等差數(shù)列中,故答案選C【題目點撥】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的??碱}型.8、C【解題分析】

首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達式,在中,可以計算出的一個表達式,根據(jù)長度關(guān)系可構(gòu)造等式求得半徑,進而求出球的表面積.【題目詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.【題目點撥】本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關(guān)問題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.9、A【解題分析】

根據(jù)復數(shù)的乘法運算法則化簡可得,根據(jù)純虛數(shù)的概念可得結(jié)果.【題目詳解】由題可知原式為,該復數(shù)為純虛數(shù),所以.故選:A【題目點撥】本題考查復數(shù)的運算和復數(shù)的分類,屬基礎(chǔ)題.10、B【解題分析】

甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.11、D【解題分析】

根據(jù)異面直線的判定定理、定義和性質(zhì),結(jié)合線面垂直的關(guān)系,對選項中的命題判斷.【題目詳解】A.假設(shè)直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據(jù)異面直線的性質(zhì)知,過只有唯一平面與平行,故正確.C.根據(jù)過一點有且只有一個平面與已知直線垂直知,故正確.D.根據(jù)異面直線的性質(zhì)知,過不一定能作一平面與垂直,故錯誤.故選:D【題目點撥】本題主要考查異面直線的定義,性質(zhì)以及線面關(guān)系,還考查了理解辨析的能力,屬于中檔題.12、C【解題分析】

根據(jù)雙曲線的標準方程,即可寫出漸近線方程.【題目詳解】雙曲線,雙曲線的漸近線方程為,故選:C【題目點撥】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13、80211【解題分析】

由,利用二項式定理即可得,分別令、后,作差即可得.【題目詳解】由題意,則,令,得,令,得,故.故答案為:80,211.【題目點撥】本題考查了二項式定理的應用,屬于中檔題.14、【解題分析】

設(shè)點為,由拋物線定義知,,求出點P坐標代入雙曲線方程得到的關(guān)系式,求出雙曲線的漸近線方程,利用點到直線的距離公式求解即可.【題目詳解】由題意得F(2,0),因為點P在拋物線y2=8x上,|FP|=5,設(shè)點為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因為a2+b2=4,解得a=1,b=,因為雙曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點到直線的距離公式可得,點F到雙曲線的漸近線的距離.故答案為:【題目點撥】本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運算求解能力和知識遷移能力;靈活運用雙曲線和拋物線的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.15、【解題分析】

由題意利用任意角的三角函數(shù)的定義,兩角和差正弦公式,求得的值.【題目詳解】解:∵角的終邊過點,∴,,∴,故答案為:.【題目點撥】本題主要考查任意角的三角函數(shù)的定義,兩角和差正弦公式,屬于基礎(chǔ)題.16、②【解題分析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯誤;“p∨q”為假命題說明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯誤;因為“若xy=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯誤.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解題分析】

(1)等價于(Ⅰ)或(Ⅱ)或(Ⅲ),分別解出,再求并集即可;(2)利用基本不等式及可得,代入可得最值.【題目詳解】(1)等價于(Ⅰ)或(Ⅱ)或(Ⅲ)由(Ⅰ)得:由(Ⅱ)得:由(Ⅲ)得:.原不等式的解集為;(2),,,,,當且僅當,即時取等號,,當且僅當即時取等號,.【題目點撥】本題考查分類討論解絕對值不等式,考查三角不等式的應用及基本不等式的應用,是一道中檔題.18、(1)(2)答案見解析(3)答案見解析【解題分析】

(1)設(shè)曲線在點,處的切線的斜率為,可求得,,利用直線的點斜式方程即可求得答案;(2)由(Ⅰ)知,,分時,,三類討論,即可求得各種情況下的的單調(diào)區(qū)間為;(3)分與兩類討論,即可判斷函數(shù)的零點個數(shù).【題目詳解】(1),,設(shè)曲線在點,處的切線的斜率為,則,又,曲線在點,處的切線方程為:,即;(2)由(1)知,,故當時,,所以在上單調(diào)遞增;當時,,;,,;的遞減區(qū)間為,遞增區(qū)間為,;當時,同理可得的遞增區(qū)間為,遞減區(qū)間為,;綜上所述,時,單調(diào)遞增為,無遞減區(qū)間;當時,的遞減區(qū)間為,遞增區(qū)間為,;當時,的遞增區(qū)間為,遞減區(qū)間為,;(3)當時,恒成立,所以無零點;當時,由,得:,只有一個零點.【題目點撥】本題考查利用導數(shù)研究曲線上某點的切線方程,利用導數(shù)研究函數(shù)的單調(diào)性,考查分類討論思想與推理、運算能力,屬于中檔題.19、(1);(2)證明見解析.【解題分析】

(1)根據(jù)橢圓的基本性質(zhì)列出方程組,即可得出橢圓方程;(2)設(shè)點,,,由,,結(jié)合斜率公式化簡得出,,即,滿足,由的任意性,得出直線恒過一個定點.【題目詳解】(1)依題意得,解得即橢圓:;(2)設(shè)點,,其中,由,得,即,注意到,于是,因此,滿足由的任意性知,,,即直線恒過一個定點.【題目點撥】本題主要考查了求橢圓的方程,直線過定點問題,屬于中檔題.20、(1)見解析(2)【解題分析】

(1)設(shè)EC與DF交于點N,連結(jié)MN,由中位線定理可得MN∥AC,故AC∥平面MDF;(2)取CD中點為G,連結(jié)BG,EG,則可證四邊形ABGD是矩形,由面面垂直的性質(zhì)得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,從而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入體積公式即可計算出體積.【題目詳解】(1)證明:設(shè)與交于點,連接,在矩形中,點為中點,∵為的中點,∴,又∵平面,平面,∴平面.(2)取中點為,連接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的長即為四棱錐的高,在梯形中,,∴四邊形是平行四邊形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.【題目點撥】求錐體的體積要充分利用多面體的截面和旋轉(zhuǎn)體的軸截面,將空間問題轉(zhuǎn)化為平面問題求解,注意求體積的一些特殊方法——分割法、補形法、等體積法.①割補法:求一些不規(guī)則幾何體的體積時,常用割補法轉(zhuǎn)化成已知體積公式的幾何體進行解決.②等積法:等積法包括等面積法和等體積法.等積法的前提是幾何圖形(或幾何體)的面積(或體積)通過已知條件可以得到,利用等積法可以用來求解幾何圖形的高或幾何體的高,特別是在求三角形的高和三棱錐的高時,這一方法回避了通過具體作圖得到三角形(或三棱錐)的高,而通過直接計算得到高的數(shù)值.21、(1)見解析,或;(2)存在,.【解題分析】

(1)滿足題意有兩種組合:①

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論