![江蘇省鎮(zhèn)江市鎮(zhèn)江中學2024屆高三下學期周練試卷(一)數(shù)學試題_第1頁](http://file4.renrendoc.com/view10/M03/23/0E/wKhkGWWPVBSAa47MAAHiDRFCgOA124.jpg)
![江蘇省鎮(zhèn)江市鎮(zhèn)江中學2024屆高三下學期周練試卷(一)數(shù)學試題_第2頁](http://file4.renrendoc.com/view10/M03/23/0E/wKhkGWWPVBSAa47MAAHiDRFCgOA1242.jpg)
![江蘇省鎮(zhèn)江市鎮(zhèn)江中學2024屆高三下學期周練試卷(一)數(shù)學試題_第3頁](http://file4.renrendoc.com/view10/M03/23/0E/wKhkGWWPVBSAa47MAAHiDRFCgOA1243.jpg)
![江蘇省鎮(zhèn)江市鎮(zhèn)江中學2024屆高三下學期周練試卷(一)數(shù)學試題_第4頁](http://file4.renrendoc.com/view10/M03/23/0E/wKhkGWWPVBSAa47MAAHiDRFCgOA1244.jpg)
![江蘇省鎮(zhèn)江市鎮(zhèn)江中學2024屆高三下學期周練試卷(一)數(shù)學試題_第5頁](http://file4.renrendoc.com/view10/M03/23/0E/wKhkGWWPVBSAa47MAAHiDRFCgOA1245.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省鎮(zhèn)江市鎮(zhèn)江中學2024屆高三下學期周練試卷(一)數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.閱讀下面的程序框圖,運行相應的程序,程序運行輸出的結果是()A.1.1 B.1 C.2.9 D.2.82.已知奇函數(shù)是上的減函數(shù),若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.43.已知復數(shù)z滿足(i為虛數(shù)單位),則在復平面內復數(shù)z對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函數(shù)的最小正周期為,為了得到函數(shù)的圖象,只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度5.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.6.設函數(shù)若關于的方程有四個實數(shù)解,其中,則的取值范圍是()A. B. C. D.7.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當x∈[﹣3,﹣2]時,f(x)=﹣x﹣2,則()A. B.f(sin3)<f(cos3)C. D.f(2020)>f(2019)8.若雙曲線:繞其對稱中心旋轉后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或9.若,滿足約束條件,則的取值范圍為()A. B. C. D.10.斜率為1的直線l與橢圓相交于A、B兩點,則的最大值為A.2 B. C. D.11.某地區(qū)高考改革,實行“3+2+1”模式,即“3”指語文、數(shù)學、外語三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學科中任意選擇兩門學科,則一名學生的不同選科組合有()A.8種 B.12種 C.16種 D.20種12.若復數(shù)是純虛數(shù),則()A.3 B.5 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓:的一個焦點坐標為,則的長軸長為_______.14.已知實數(shù)x,y滿足,則的最大值為____________.15.已知函數(shù),在區(qū)間上隨機取一個數(shù),則使得≥0的概率為.16.(5分)如圖是一個算法的流程圖,若輸出的值是,則輸入的值為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方形是某城市的一個區(qū)域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統(tǒng)一設置如下:先直行綠燈30秒,再左轉綠燈30秒,然后是紅燈1分鐘,右轉不受紅綠燈影響,這樣獨立的循環(huán)運行.小明上學需沿街道從處騎行到處(不考慮處的紅綠燈),出發(fā)時的兩條路線()等可能選擇,且總是走最近路線.(1)請問小明上學的路線有多少種不同可能?(2)在保證通過紅綠燈路口用時最短的前提下,小明優(yōu)先直行,求小明騎行途中恰好經過處,且全程不等紅綠燈的概率;(3)請你根據(jù)每條可能的路線中等紅綠燈的次數(shù)的均值,為小明設計一條最佳的上學路線,且應盡量避開哪條路線?18.(12分)已知函數(shù).(1)求不等式的解集;(2)若對任意恒成立,求的取值范圍.19.(12分)在平面直角坐標系中,曲線的參數(shù)方程為:(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為:.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若直線與曲線交于,兩點,與曲線交于,兩點,求取得最大值時直線的直角坐標方程.20.(12分)已知數(shù)列的各項均為正數(shù),為其前n項和,對于任意的滿足關系式.(1)求數(shù)列的通項公式;(2)設數(shù)列的通項公式是,前n項和為,求證:對于任意的正數(shù)n,總有.21.(12分)的內角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.22.(10分)已知,.(1)解不等式;(2)若方程有三個解,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】
根據(jù)程序框圖的模擬過程,寫出每執(zhí)行一次的運行結果,屬于基礎題.【題目詳解】初始值,第一次循環(huán):,;第二次循環(huán):,;第三次循環(huán):,;第四次循環(huán):,;第五次循環(huán):,;第六次循環(huán):,;第七次循環(huán):,;第九次循環(huán):,;第十次循環(huán):,;所以輸出.故選:C【題目點撥】本題考查了循環(huán)結構的程序框圖的讀取以及運行結果,屬于基礎題.2、B【解題分析】
根據(jù)函數(shù)的奇偶性和單調性得到可行域,畫出可行域和目標函數(shù),根據(jù)目標函數(shù)的幾何意義平移得到答案.【題目詳解】奇函數(shù)是上的減函數(shù),則,且,畫出可行域和目標函數(shù),,即,表示直線與軸截距的相反數(shù),根據(jù)平移得到:當直線過點,即時,有最小值為.故選:.【題目點撥】本題考查了函數(shù)的單調性和奇偶性,線性規(guī)劃問題,意在考查學生的綜合應用能力,畫出圖像是解題的關鍵.3、D【解題分析】
根據(jù)復數(shù)運算,求得,再求其對應點即可判斷.【題目詳解】,故其對應點的坐標為.其位于第四象限.故選:D.【題目點撥】本題考查復數(shù)的運算,以及復數(shù)對應點的坐標,屬綜合基礎題.4、A【解題分析】
由的最小正周期是,得,即,因此它的圖象向左平移個單位可得到的圖象.故選A.考點:函數(shù)的圖象與性質.【名師點睛】三角函數(shù)圖象變換方法:5、D【解題分析】
根據(jù)面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【題目詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【題目點撥】本題考查了面面垂直的判斷問題,屬于基礎題.6、B【解題分析】
畫出函數(shù)圖像,根據(jù)圖像知:,,,計算得到答案.【題目詳解】,畫出函數(shù)圖像,如圖所示:根據(jù)圖像知:,,故,且.故.故選:.【題目點撥】本題考查了函數(shù)零點問題,意在考查學生的計算能力和應用能力,畫出圖像是解題的關鍵.7、B【解題分析】
根據(jù)函數(shù)的周期性以及x∈[﹣3,﹣2]的解析式,可作出函數(shù)f(x)在定義域上的圖象,由此結合選項判斷即可.【題目詳解】由f(x+2)=f(x),得f(x)是周期函數(shù)且周期為2,先作出f(x)在x∈[﹣3,﹣2]時的圖象,然后根據(jù)周期為2依次平移,并結合f(x)是偶函數(shù)作出f(x)在R上的圖象如下,選項A,,所以,選項A錯誤;選項B,因為,所以,所以f(sin3)<f(﹣cos3),即f(sin3)<f(cos3),選項B正確;選項C,,所以,即,選項C錯誤;選項D,,選項D錯誤.故選:B.【題目點撥】本題考查函數(shù)性質的綜合運用,考查函數(shù)值的大小比較,考查數(shù)形結合思想,屬于中檔題.8、C【解題分析】
由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結果.【題目詳解】由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點既可在軸,又可在軸上,所以或,或.故選:C【題目點撥】本題主要考查了雙曲線的簡單幾何性質,函數(shù)的概念,考查了分類討論的數(shù)學思想.9、B【解題分析】
根據(jù)約束條件作出可行域,找到使直線的截距取最值得點,相應坐標代入即可求得取值范圍.【題目詳解】畫出可行域,如圖所示:由圖可知,當直線經過點時,取得最小值-5;經過點時,取得最大值5,故.故選:B【題目點撥】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎題.10、C【解題分析】
設出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進而利用弦長公式求得|AB|的表達式,利用t的范圍求得|AB|的最大值.【題目詳解】解:設直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【題目點撥】本題主要考查了橢圓的應用,直線與橢圓的關系.常需要把直線與橢圓方程聯(lián)立,利用韋達定理,判別式找到解決問題的突破口.11、C【解題分析】
分兩類進行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對應的組合數(shù),即可求出結果.【題目詳解】若一名學生只選物理和歷史中的一門,則有種組合;若一名學生物理和歷史都選,則有種組合;因此共有種組合.故選C【題目點撥】本題主要考查兩個計數(shù)原理,熟記其計數(shù)原理的概念,即可求出結果,屬于常考題型.12、C【解題分析】
先由已知,求出,進一步可得,再利用復數(shù)模的運算即可【題目詳解】由z是純虛數(shù),得且,所以,.因此,.故選:C.【題目點撥】本題考查復數(shù)的除法、復數(shù)模的運算,考查學生的運算能力,是一道基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
由焦點坐標得從而可求出,繼而得到橢圓的方程,即可求出長軸長.【題目詳解】解:因為一個焦點坐標為,則,即,解得或由表示的是橢圓,則,所以,則橢圓方程為所以.故答案為:.【題目點撥】本題考查了橢圓的標準方程,考查了橢圓的幾何意義.本題的易錯點是忽略,從而未對的兩個值進行取舍.14、1【解題分析】
直接用表示出,然后由不等式性質得出結論.【題目詳解】由題意,又,∴,即,∴的最大值為1.故答案為:1.【題目點撥】本題考查不等式的性質,掌握不等式的性質是解題關鍵.15、【解題分析】試題分析:可以得出,所以在區(qū)間上使的范圍為,所以使得≥0的概率為考點:本小題主要考查與長度有關的幾何概型的概率計算.點評:幾何概型適用于解決一切均勻分布的問題,包括“長度”、“角度”、“面積”、“體積”等,但要注意求概率時做比的上下“測度”要一致.16、或【解題分析】
依題意,當時,由,即,解得;當時,由,解得或(舍去).綜上,得或.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)6種;(2);(3).【解題分析】
(1)從4條街中選擇2條橫街即可;(2)小明途中恰好經過處,共有4條路線,即,,,,分別對4條路線進行分析計算概率;(3)分別對小明上學的6條路線進行分析求均值,均值越大的應避免.【題目詳解】(1)路途中可以看成必須走過2條橫街和2條豎街,即從4條街中選擇2條橫街即可,所以路線總數(shù)為條.(2)小明途中恰好經過處,共有4條路線:①當走時,全程不等紅綠燈的概率;②當走時,全程不等紅綠燈的概率;③當走時,全程不等紅綠燈的概率;④當走時,全程不等紅綠燈的概率.所以途中恰好經過處,且全程不等信號燈的概率.(3)設以下第條的路線等信號燈的次數(shù)為變量,則①第一條:,則;②第二條:,則;③另外四條路線:;;,則綜上,小明上學的最佳路線為;應盡量避開.【題目點撥】本題考查概率在實際生活中的綜合應用問題,考查學生邏輯推理與運算能力,是一道有一定難度的題.18、(1);(2).【解題分析】
(1)通過討論的范圍,分為,,三種情形,分別求出不等式的解集即可;(2)通過分離參數(shù)思想問題轉化為,根據(jù)絕對值不等式的性質求出最值即可得到的范圍.【題目詳解】(1)當時,原不等式等價于,解得,所以,當時,原不等式等價于,解得,所以此時不等式無解,當時,原不等式等價于,解得,所以綜上所述,不等式解集為.(2)由,得,當時,恒成立,所以;當時,.因為當且僅當即或時,等號成立,所以;綜上的取值范圍是.【題目點撥】本題考查了解絕對值不等式問題,考查絕對值不等式的性質以及分類討論思想,轉化思想,屬于中檔題.19、(1)曲線,曲線.(2).【解題分析】
(1)用和消去參數(shù)即得的極坐標方程;將兩邊同時乘以,然后由解得直角坐標方程.(2)過極點的直線的參數(shù)方程為,代入到和:中,表示出即可求解.【題目詳解】解:由和,得,化簡得故:將兩邊同時乘以,得因為,所以得的直角坐標方程.(2)設直線的極坐標方程由,得,由,得故當時,取得最大值此時直線的極坐標方程為:,其直角坐標方程為:.【題目點撥】考查直角坐標方程、極坐標方程、參數(shù)方程的互相轉化以及應用圓的極坐標方程中的幾何意義求距離的的最大值方法;中檔題.20、(1)(2)證明見解析【解題分析】
(1)根據(jù)公式得到,計算得到答案.(2),根據(jù)裂項求和法計算得到,得到證明.【題目詳解】(1)由已知得時,,故.故數(shù)列為等比數(shù)列,且公比.又當時,,..(2)..【題目點撥】本題考查了數(shù)列通項公式和證明數(shù)列不等式,意在考查學生對于數(shù)列公式方法的綜合應用.21、(1);(2)【解題分析】
試題分析:(1)根據(jù)余弦定理求出B,帶入條件求出,利用同角三角函數(shù)關系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(jù)(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設條件,得,∴.由,得,∴,∴.點睛:解決三角形中的角邊問題時,要根據(jù)條件選擇正余弦定理,將問題轉化統(tǒng)一為邊的問題或角的問題,利用三角中兩角和差等公式處理,特別注意內角和定理的運用,涉及三角形面積最值問題時,注意均值不等式的利用,特別求角的時候,要注意分析角的范圍,才能寫出角的大小.22、(1);(2).【解題分析】
(1)對分三種情況討論,分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 哈爾濱金融學院《學前兒童科學教育與活動指導》2023-2024學年第二學期期末試卷
- 班級活動如何做到寓教于樂
- 電子商務環(huán)境下農產品綠色配送策略研究
- 人力資源戰(zhàn)略與規(guī)劃模擬習題及答案
- 2020-2025年中國商場超市O2O市場運行態(tài)勢及行業(yè)發(fā)展前景預測報告
- 山西大學《西方文明史導論》2023-2024學年第二學期期末試卷
- 2025年輸變電工程模板-工程竣工驗收報告(線路)
- 江蘇海洋大學《跨文化交際學概論》2023-2024學年第二學期期末試卷
- 直播帶貨網(wǎng)紅經濟下的營銷新模式
- 廣東酒店管理職業(yè)技術學院《小學跨學科教育研究》2023-2024學年第二學期期末試卷
- 甲基丙烯酸甲酯生產工藝畢業(yè)設計設備選型與布置模板
- 徐金桂行政法與行政訴訟法新講義
- 瀝青拌合設備結構認知
- 2023年北京高考政治真題試題及答案
- 復旦中華傳統(tǒng)體育課程講義05木蘭拳基本技術
- 五年級上冊數(shù)學《比的應用》專項訓練課件
- 北師大版五年級上冊數(shù)學教學課件第5課時 人民幣兌換
- 工程回訪記錄單
- 住房公積金投訴申請書
- 外研版英語五年級下冊第一單元全部試題
- 檢驗科生物安全風險評估報告
評論
0/150
提交評論