廣東省顏錫祺中學(xué)2024屆高三下學(xué)期四調(diào)考試數(shù)學(xué)試題(8K版含解析)_第1頁(yè)
廣東省顏錫祺中學(xué)2024屆高三下學(xué)期四調(diào)考試數(shù)學(xué)試題(8K版含解析)_第2頁(yè)
廣東省顏錫祺中學(xué)2024屆高三下學(xué)期四調(diào)考試數(shù)學(xué)試題(8K版含解析)_第3頁(yè)
廣東省顏錫祺中學(xué)2024屆高三下學(xué)期四調(diào)考試數(shù)學(xué)試題(8K版含解析)_第4頁(yè)
廣東省顏錫祺中學(xué)2024屆高三下學(xué)期四調(diào)考試數(shù)學(xué)試題(8K版含解析)_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省顏錫祺中學(xué)2024屆高三下學(xué)期四調(diào)考試數(shù)學(xué)試題(8K版,含解析)注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.單位正方體ABCD-,黑、白兩螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、白兩螞蟻的距離是()A.1 B. C. D.02.已知拋物線,過(guò)拋物線上兩點(diǎn)分別作拋物線的兩條切線為兩切線的交點(diǎn)為坐標(biāo)原點(diǎn)若,則直線與的斜率之積為()A. B. C. D.3.已知復(fù)數(shù),則對(duì)應(yīng)的點(diǎn)在復(fù)平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.5.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.6.金庸先生的武俠小說(shuō)《射雕英雄傳》第12回中有這樣一段情節(jié),“……洪七公道:肉只五種,但豬羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有幾般變化,我可算不出了”.現(xiàn)有五種不同的肉,任何兩種(含兩種)以上的肉混合后的滋味都不一樣,則混合后可以組成的所有不同的滋味種數(shù)為()A.20 B.24 C.25 D.267.等比數(shù)列的前項(xiàng)和為,若,,,,則()A. B. C. D.8.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.39.過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),若,則直線的斜率為()A. B.C.或 D.或10.已知是虛數(shù)單位,若,,則實(shí)數(shù)()A.或 B.-1或1 C.1 D.11.已知函,,則的最小值為()A. B.1 C.0 D.12.在復(fù)平面內(nèi),復(fù)數(shù)(,)對(duì)應(yīng)向量(O為坐標(biāo)原點(diǎn)),設(shè),以射線Ox為始邊,OZ為終邊旋轉(zhuǎn)的角為,則,法國(guó)數(shù)學(xué)家棣莫弗發(fā)現(xiàn)了棣莫弗定理:,,則,由棣莫弗定理可以導(dǎo)出復(fù)數(shù)乘方公式:,已知,則()A. B.4 C. D.16二、填空題:本題共4小題,每小題5分,共20分。13.記等差數(shù)列和的前項(xiàng)和分別為和,若,則______.14.已知雙曲線C:()的左、右焦點(diǎn)為,,為雙曲線C上一點(diǎn),且,若線段與雙曲線C交于另一點(diǎn)A,則的面積為______.15.復(fù)數(shù)為虛數(shù)單位)的虛部為__________.16.已知橢圓與雙曲線(,)有相同的焦點(diǎn),其左、右焦點(diǎn)分別為、,若橢圓與雙曲線在第一象限內(nèi)的交點(diǎn)為,且,則雙曲線的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí).①求函數(shù)在處的切線方程;②定義其中,求;(2)當(dāng)時(shí),設(shè),(為自然對(duì)數(shù)的底數(shù)),若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求的取值范圍.18.(12分)如圖,在直三棱柱中,分別是中點(diǎn),且,.求證:平面;求點(diǎn)到平面的距離.19.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點(diǎn),與平面所成的角的正弦值為,求的長(zhǎng).20.(12分)分別為的內(nèi)角的對(duì)邊.已知.(1)若,求;(2)已知,當(dāng)?shù)拿娣e取得最大值時(shí),求的周長(zhǎng).21.(12分)已知函數(shù),.(1)當(dāng)時(shí),討論函數(shù)的零點(diǎn)個(gè)數(shù);(2)若在上單調(diào)遞增,且求c的最大值.22.(10分)已知函數(shù)(,為自然對(duì)數(shù)的底數(shù)),.(1)若有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;(2)當(dāng)時(shí),對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】

根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過(guò)幾段后又回到起點(diǎn),得到每爬1步回到起點(diǎn),周期為1.計(jì)算黑螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn)以及計(jì)算白螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn),即可計(jì)算出它們的距離.【題目詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過(guò)1段后又回到起點(diǎn),可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點(diǎn);同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點(diǎn),所以它們此時(shí)的距離為.故選B.【題目點(diǎn)撥】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問(wèn)題,考查空間想象與推理能力,屬于中等題.2、A【解題分析】

設(shè)出A,B的坐標(biāo),利用導(dǎo)數(shù)求出過(guò)A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【題目詳解】解:設(shè)A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點(diǎn)睛:(1)本題主要考查拋物線的簡(jiǎn)單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學(xué)生對(duì)這些基礎(chǔ)知識(shí)的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點(diǎn),先設(shè)A,B,,再求切線PA,PB方程,求點(diǎn)P坐標(biāo),再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點(diǎn)P的坐標(biāo),計(jì)算量就大一些.3、A【解題分析】

利用復(fù)數(shù)除法運(yùn)算化簡(jiǎn),由此求得對(duì)應(yīng)點(diǎn)所在象限.【題目詳解】依題意,對(duì)應(yīng)點(diǎn)為,在第一象限.故選A.【題目點(diǎn)撥】本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)對(duì)應(yīng)點(diǎn)的坐標(biāo)所在象限,屬于基礎(chǔ)題.4、C【解題分析】

作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【題目詳解】如圖為幾何體的直觀圖,上下底面為腰長(zhǎng)為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【題目點(diǎn)撥】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意球心的確定.5、B【解題分析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進(jìn)行辨析.【題目詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當(dāng)m,n時(shí),檢驗(yàn)可得,A、C、D都不正確,故選:B.【題目點(diǎn)撥】此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項(xiàng).6、D【解題分析】

利用組合的意義可得混合后所有不同的滋味種數(shù)為,再利用組合數(shù)的計(jì)算公式可得所求的種數(shù).【題目詳解】混合后可以組成的所有不同的滋味種數(shù)為(種),故選:D.【題目點(diǎn)撥】本題考查組合的應(yīng)用,此類問(wèn)題注意實(shí)際問(wèn)題的合理轉(zhuǎn)化,本題屬于容易題.7、D【解題分析】試題分析:由于在等比數(shù)列中,由可得:,又因?yàn)?,所以有:是方程的二?shí)根,又,,所以,故解得:,從而公比;那么,故選D.考點(diǎn):等比數(shù)列.8、C【解題分析】

先根據(jù)奇偶性,求出的解析式,令,即可求出?!绢}目詳解】因?yàn)?、分別是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡(jiǎn)得,即令,所以,故選C?!绢}目點(diǎn)撥】本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。9、A【解題分析】

利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結(jié)合,求得直線的傾斜角為,進(jìn)而求得的斜率.【題目詳解】曲線為圓的上半部分,圓心為,半徑為.設(shè)與曲線相切于點(diǎn),則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A【題目點(diǎn)撥】本小題主要考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.10、B【解題分析】

由題意得,,然后求解即可【題目詳解】∵,∴.又∵,∴,∴.【題目點(diǎn)撥】本題考查復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題11、B【解題分析】

,利用整體換元法求最小值.【題目詳解】由已知,又,,故當(dāng),即時(shí),.故選:B.【題目點(diǎn)撥】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應(yīng)用,是一道中檔題.12、D【解題分析】

根據(jù)復(fù)數(shù)乘方公式:,直接求解即可.【題目詳解】,.故選:D【題目點(diǎn)撥】本題考查了復(fù)數(shù)的新定義題目、同時(shí)考查了復(fù)數(shù)模的求法,解題的關(guān)鍵是理解棣莫弗定理,將復(fù)數(shù)化為棣莫弗定理形式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

結(jié)合等差數(shù)列的前項(xiàng)和公式,可得,求解即可.【題目詳解】由題意,,,因?yàn)?所以.故答案為:.【題目點(diǎn)撥】本題考查了等差數(shù)列的前項(xiàng)和公式及等差中項(xiàng)的應(yīng)用,考查了學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.14、【解題分析】

由已知得即,,可解得,由在雙曲線C上,代入即可求得雙曲線方程,然后求得直線的方程與雙曲線方程聯(lián)立求得點(diǎn)A坐標(biāo),借助,即可解得所求.【題目詳解】由已知得,又,,所以,解得或,由在雙曲線C上,所以或,所以或(舍去),因此雙曲線C的方程為.又,所以線段的方程為,與雙曲線C的方程聯(lián)立消去x整理得,所以,,所以點(diǎn)A坐標(biāo)為,所以.【題目點(diǎn)撥】本題主要考查直線與雙曲線的位置關(guān)系,考查雙曲線方程的求解,考查求三角形面積,考查學(xué)生的計(jì)算能力,難度較難.15、1【解題分析】試題分析:,即虛部為1,故填:1.考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算16、【解題分析】

先根據(jù)橢圓得出焦距,結(jié)合橢圓的定義求出,結(jié)合雙曲線的定義求出雙曲線的實(shí)半軸,最后利用離心率的公式求出離心率即可.【題目詳解】解:因?yàn)闄E圓,則焦點(diǎn)為,又因?yàn)闄E圓與雙曲線(,)有相同的焦點(diǎn),橢圓與雙曲線在第一象限內(nèi)的交點(diǎn)為,且,在橢圓中:由橢圓的定義:在雙曲線中:,所以雙曲線的實(shí)軸長(zhǎng)為:,實(shí)半軸為則雙曲線的離心率為:.故答案為:【題目點(diǎn)撥】本題主要考查橢圓與雙曲線的定義,考查離心率的求解,利用定義解決綜合問(wèn)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)①;②8079;(2).【解題分析】

(1)①時(shí),,,利用導(dǎo)數(shù)的幾何意義能求出函數(shù)在處的切線方程.②由,得,由此能求出的值.(2)根據(jù)若對(duì)任意給定的,,在區(qū)間,上總存在兩個(gè)不同的,使得成立,得到函數(shù)在區(qū)間,上不單調(diào),從而求得的取值范圍.【題目詳解】(1)①∵,∴∴,∴,∵,所以切線方程為.②,.令,則,.因?yàn)棰?所以②,由①+②得,所以.所以.(2),當(dāng)時(shí),函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減∵,,所以,函數(shù)在上的值域?yàn)?因?yàn)?,,故,,①此時(shí),當(dāng)變化時(shí)、的變化情況如下:—0+單調(diào)減最小值單調(diào)增∵,,∴對(duì)任意給定的,在區(qū)間上總存在兩個(gè)不同的,使得成立,當(dāng)且僅當(dāng)滿足下列條件,即令,,,當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減所以,對(duì)任意,有,即②對(duì)任意恒成立.由③式解得:④綜合①④可知,當(dāng)時(shí),對(duì)任意給定的,在上總存在兩個(gè)不同的,使成立.【題目點(diǎn)撥】本題考查了導(dǎo)數(shù)的幾何意義、應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、求函數(shù)最值問(wèn)題,會(huì)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的單調(diào)性,會(huì)根據(jù)函數(shù)的增減性求出閉區(qū)間上函數(shù)的最值,掌握不等式恒成立時(shí)所滿足的條件.不等式恒成立常轉(zhuǎn)化為函數(shù)最值問(wèn)題解決.18、(1)詳見解析;(2).【解題分析】

(1)利用線面垂直的判定定理和性質(zhì)定理即可證明;(2)取中點(diǎn)為,則,證得平面,利用等體積法求解即可.【題目詳解】(1)因?yàn)?,,,是的中點(diǎn),,為直三棱柱,所以平面,因?yàn)闉橹悬c(diǎn),所以平面,,又,平面(2),又分別是中點(diǎn),.由(1)知,,又平面,取中點(diǎn)為,連接如圖,則,平面,設(shè)點(diǎn)到平面的距離為,由,得,即,解得,點(diǎn)到平面的距離為.【題目點(diǎn)撥】本題考查線面垂直的判定定理和性質(zhì)定理、等體積法求點(diǎn)到面的距離;考查邏輯推理能力和運(yùn)算求解能力;熟練掌握線面垂直的判定定理和性質(zhì)定理是求解本題的關(guān)鍵;屬于中檔題.19、(Ⅰ)見解析;(Ⅱ)【解題分析】

(Ⅰ)取的中點(diǎn),連接,由,,得三點(diǎn)共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設(shè),則,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加求得,再過(guò)作,則平面,即點(diǎn)到平面的距離,由是中點(diǎn),得到到平面的距離,然后根據(jù)與平面所成的角的正弦值為求解.【題目詳解】(Ⅰ)取的中點(diǎn),連接,由,,得三點(diǎn)共線,且,又,,所以平面,所以.(Ⅱ)設(shè),,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加得:,所以,,過(guò)作,則平面,即點(diǎn)到平面的距離,因?yàn)槭侵悬c(diǎn),所以為到平面的距離,因?yàn)榕c平面所成的角的正弦值為,即,解得.【題目點(diǎn)撥】本題主要考查線面垂直的判定定理,線面角的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象運(yùn)算求解的能力,屬于中檔題.20、(1)(2)【解題分析】

(1)根據(jù)正弦定理,將,化角為邊,即可求出,再利用正弦定理即可求出;(2)根據(jù),選擇,所以當(dāng)?shù)拿娣e取得最大值時(shí),最大,結(jié)合(1)中條件,即可求出最大時(shí),對(duì)應(yīng)的的值,再根據(jù)余弦定理求出邊,進(jìn)而得到的周長(zhǎng).【題目詳解】(1)由,得,即.因?yàn)?,所?由,得.(2)因?yàn)?,所以,?dāng)且僅當(dāng)時(shí),等號(hào)成立.因?yàn)榈拿娣e.所以當(dāng)時(shí),的面積取得最大值,此時(shí),則,所以的周長(zhǎng)為.【題目點(diǎn)撥】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應(yīng)用,意在考查學(xué)生的轉(zhuǎn)化能力和數(shù)學(xué)運(yùn)算能力.21、(1)見解析(2)2【解題分析】

(1)將代入可得,令,則,設(shè),則轉(zhuǎn)化問(wèn)題為與的交點(diǎn)問(wèn)題,利用導(dǎo)函數(shù)判斷的圖象,即可求解;(2)由題可得在上恒成立,設(shè),利用導(dǎo)函數(shù)可得,則,即,再設(shè),利用導(dǎo)函數(shù)求得的最小值,則,進(jìn)而求解.【題目詳解】(1)當(dāng)時(shí),,定義域?yàn)?由可得,令,則,由,得;由,得,所以在上單調(diào)遞增,在上單調(diào)遞減,則

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論