版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省無錫市江陰四校2024屆高三下期末質(zhì)量監(jiān)測數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.2.框圖與程序是解決數(shù)學(xué)問題的重要手段,實際生活中的一些問題在抽象為數(shù)學(xué)模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數(shù)據(jù)的方差,設(shè)計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應(yīng)填入()A., B. C., D.,3.若復(fù)數(shù)()在復(fù)平面內(nèi)的對應(yīng)點在直線上,則等于()A. B. C. D.4.已知集合,集合,則等于()A. B.C. D.5.函數(shù)的圖象大致為()A. B.C. D.6.胡夫金字塔是底面為正方形的錐體,四個側(cè)面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設(shè)胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側(cè)棱和底邊布設(shè)單條燈帶,則需要燈帶的總長度約為A. B.C. D.7.若函數(shù)的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.8.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件9.已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是()A. B. C. D.10.已知實數(shù)、滿足約束條件,則的最大值為()A. B. C. D.11.已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.若,則的虛部是A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)的圖像向左平移個單位得到函數(shù)的圖像.則在區(qū)間上的最小值為________.14.“今有女善織,日益功疾,初日織五尺,今一月共織九匹三丈.”其白話意譯為:“現(xiàn)有一善織布的女子,從第2天開始,每天比前一天多織相同數(shù)量的布,第一天織了5尺布,現(xiàn)在一個月(按30天計算)共織布390尺.”則每天增加的數(shù)量為____尺,設(shè)該女子一個月中第n天所織布的尺數(shù)為,則______.15.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,則a1=_____,a1+a2+…+a5=____16.已知函數(shù)在處的切線與直線平行,則為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點.(Ⅰ)求證:平面;(Ⅱ)設(shè),求三棱錐的體積.18.(12分)已知數(shù)列的前項和為,且滿足.(1)求數(shù)列的通項公式;(2)若,,且數(shù)列前項和為,求的取值范圍.19.(12分)如圖,設(shè)A是由個實數(shù)組成的n行n列的數(shù)表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實數(shù),且aij{1,-1}.記S(n,n)為所有這樣的數(shù)表構(gòu)成的集合.對于,記ri(A)為A的第i行各數(shù)之積,cj(A)為A的第j列各數(shù)之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請寫出一個AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數(shù)n,對于所有的AS(n,n),求l(A)的取值集合.20.(12分)已知關(guān)于的不等式解集為().(1)求正數(shù)的值;(2)設(shè),且,求證:.21.(12分)在四棱錐的底面是菱形,底面,,分別是的中點,.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點,使與所成角的余弦值為,若存在,確定點的位置;若不存在,說明理由.22.(10分)已知圓的極坐標(biāo)方程是,以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)),若直線與圓相切,求實數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
將正四面體補成正方體,通過正方體的對角線與球的半徑關(guān)系,求解即可.【題目詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設(shè)球的半徑為,則,解得,所以,故選:A.【題目點撥】本題主要考查多面體外接球問題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉(zhuǎn)化,屬于中檔題.2、A【解題分析】
依題意問題是,然后按直到型驗證即可.【題目詳解】根據(jù)題意為了計算7個數(shù)的方差,即輸出的,觀察程序框圖可知,應(yīng)填入,,故選:A.【題目點撥】本題考查算法與程序框圖,考查推理論證能力以及轉(zhuǎn)化與化歸思想,屬于基礎(chǔ)題.3、C【解題分析】
由題意得,可求得,再根據(jù)共軛復(fù)數(shù)的定義可得選項.【題目詳解】由題意得,解得,所以,所以,故選:C.【題目點撥】本題考查復(fù)數(shù)的幾何表示和共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.4、B【解題分析】
求出中不等式的解集確定出集合,之后求得.【題目詳解】由,所以,故選:B.【題目點撥】該題考查的是有關(guān)集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎(chǔ)題目.5、A【解題分析】
用偶函數(shù)的圖象關(guān)于軸對稱排除,用排除,用排除.故只能選.【題目詳解】因為,所以函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【題目點撥】本題考查了根據(jù)函數(shù)的性質(zhì),辨析函數(shù)的圖像,排除法,屬于中檔題.6、D【解題分析】
設(shè)胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側(cè)棱長為,所以需要燈帶的總長度約為,故選D.7、B【解題分析】
把已知點坐標(biāo)代入求出,然后驗證各選項.【題目詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個選項都不合題意,若,則函數(shù)為,只有時,,即是對稱軸.故選:B.【題目點撥】本題考查正弦型復(fù)合函數(shù)的對稱軸,掌握正弦函數(shù)的性質(zhì)是解題關(guān)鍵.8、A【解題分析】
畫出“,,,所表示的平面區(qū)域,即可進行判斷.【題目詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內(nèi)部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【題目點撥】本題考查了不等式表示的平面區(qū)域問題,考查命題的充分條件和必要條件的判斷,難度較易.9、A【解題分析】
由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結(jié)合即可解決.【題目詳解】由已知可得,,所以,從而雙曲線方程為,不妨設(shè)點在雙曲線右支上運動,則,當(dāng)時,此時,所以,,所以;當(dāng)軸時,,所以,又為銳角三角形,所以.故選:A.【題目點撥】本題考查雙曲線的性質(zhì)及其應(yīng)用,本題的關(guān)鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.10、C【解題分析】
作出不等式組表示的平面區(qū)域,作出目標(biāo)函數(shù)對應(yīng)的直線,結(jié)合圖象知當(dāng)直線過點時,取得最大值.【題目詳解】解:作出約束條件表示的可行域是以為頂點的三角形及其內(nèi)部,如下圖表示:當(dāng)目標(biāo)函數(shù)經(jīng)過點時,取得最大值,最大值為.故選:C.【題目點撥】本題主要考查線性規(guī)劃等基礎(chǔ)知識;考查運算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識,屬于中檔題.11、B【解題分析】
求出復(fù)數(shù),得出其對應(yīng)點的坐標(biāo),確定所在象限.【題目詳解】由題意,對應(yīng)點坐標(biāo)為,在第二象限.故選:B.【題目點撥】本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.12、B【解題分析】
因為,所以的虛部是.故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
注意平移是針對自變量x,所以,再利用整體換元法求值域(最值)即可.【題目詳解】由已知,,,又,故,,所以的最小值為.故答案為:.【題目點撥】本題考查正弦型函數(shù)在給定區(qū)間上的最值問題,涉及到圖象的平移變換、輔助角公式的應(yīng)用,是一道基礎(chǔ)題.14、52【解題分析】
設(shè)從第2天開始,每天比前一天多織尺布,由等差數(shù)列前項和公式求出,由此利用等差數(shù)列通項公式能求出.【題目詳解】設(shè)從第2天開始,每天比前一天多織d尺布,
則,
解得,即每天增加的數(shù)量為,
,故答案為,52.【題目點撥】本題主要考查等差數(shù)列的通項公式、等差數(shù)列的求和公式,意在考查利用所學(xué)知識解決問題的能力,屬于中檔題.15、80211【解題分析】
由,利用二項式定理即可得,分別令、后,作差即可得.【題目詳解】由題意,則,令,得,令,得,故.故答案為:80,211.【題目點撥】本題考查了二項式定理的應(yīng)用,屬于中檔題.16、【解題分析】
根據(jù)題意得出,由此可得出實數(shù)的值.【題目詳解】,,直線的斜率為,由于函數(shù)在處的切線與直線平行,則.故答案為:.【題目點撥】本題考查利用函數(shù)的切線與直線平行求參數(shù),解題時要結(jié)合兩直線的位置關(guān)系得出兩直線斜率之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)【解題分析】
(Ⅰ)取中點,連,,根據(jù)平行四邊形,可得,進而證得平面平面,利用面面垂直的性質(zhì),得平面,又由,即可得到平面.(Ⅱ)根據(jù)三棱錐的體積公式,利用等積法,即可求解.【題目詳解】(Ⅰ)取中點,連,,由,可得,可得是平行四邊形,則,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中點,則,而平面平面,而,∴平面.(Ⅱ)根據(jù)三棱錐的體積公式,得.【題目點撥】本題主要考查了空間中線面位置關(guān)系的判定與證明,以及利用“等體積法”求解三棱錐的體積,其中解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,以及合理利用“等體積法”求解是解答的關(guān)鍵,著重考查了推理與論證能力,屬于基礎(chǔ)題.18、(1)(2)【解題分析】
(1)由,可求,然后由時,可得,根據(jù)等比數(shù)列的通項可求(2)由,而,利用裂項相消法可求.【題目詳解】(1)當(dāng)時,,解得,當(dāng)時,①②②①得,即,數(shù)列是以2為首項,2為公比的等比數(shù)列,;(2)∴,∴,,.【題目點撥】本題考查遞推公式在數(shù)列的通項求解中的應(yīng)用,等比數(shù)列的通項公式、裂項求和方法,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.19、(Ⅰ)答案見解析;(Ⅱ)不存在,理由見解析;(Ⅲ)【解題分析】
(Ⅰ)可取第一行都為-1,其余的都取1,即滿足題意;(Ⅱ)用反證法證明:假設(shè)存在,得出矛盾,從而證明結(jié)論;(Ⅲ)通過分析正確得出l(A)的表達式,以及從A0如何得到A1,A2……,以此類推可得到Ak.【題目詳解】(Ⅰ)答案不唯一,如圖所示數(shù)表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因為,,所以,,...,,,,...,這18個數(shù)中有9個1,9個-1.令.一方面,由于這18個數(shù)中有9個1,9個-1,從而①,另一方面,表示數(shù)表中所有元素之積(記這81個實數(shù)之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個實數(shù)之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,...,,,,...,中-1的個數(shù),由③知,上述2n個實數(shù)中,-1的個數(shù)一定為偶數(shù),該偶數(shù)記為,則1的個數(shù)為2n-2k,所以,對數(shù)表,顯然.將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,顯然,依此類推,將數(shù)表中的由1變?yōu)?1,得到數(shù)表,即數(shù)表滿足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合為.【題目點撥】本題為數(shù)列的創(chuàng)新應(yīng)用題,考查數(shù)學(xué)分析與思考能力及推理求解能力,解題關(guān)鍵是讀懂題意,根據(jù)引入的概念與性質(zhì)進行推理求解,屬于較難題.20、(1)1;(2)證明見解析.【解題分析】
(1)將不等式化為,求解得出,根據(jù)解集確定正數(shù)的值;(2)利用基本不等式以及不等式的性質(zhì),得出,,,三式相加,即可得證.【題目詳解】(1)解:不等式,即不等式∴,而,于是依題意得(2)證明:由(1)知,原不等式可化為∵,∴,同理,三式相加得,當(dāng)且僅當(dāng)時取等號綜上.【題目點撥】本題主要考查了求絕對值不等式中參數(shù)的范圍以及基本不等式的應(yīng)用,屬于中檔題.21
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年合成材料助劑項目申請報告
- 2024-2025學(xué)年新疆維吾爾昌吉回族自治州數(shù)學(xué)三年級第一學(xué)期期末聯(lián)考模擬試題含解析
- 2025年光電傳感器項目申請報告模稿
- 2025年云母增強塑料項目立項申請報告
- 2024-2025學(xué)年渭南市合陽縣數(shù)學(xué)三上期末考試試題含解析
- 2025年三坐標(biāo)測量機項目立項申請報告模板
- 2025年CT設(shè)備項目提案報告模式
- 2025年農(nóng)業(yè)服務(wù)項目規(guī)劃申請報告模稿
- 2022大學(xué)生籃球活動策劃方案三篇
- 實習(xí)生實習(xí)期工作總結(jié)報告5篇
- 2023年高考真題-地理(浙江卷)含答案
- 人員招聘與培訓(xùn)實務(wù)期末復(fù)習(xí)資料
- kv桿塔防腐施工組織設(shè)計
- 外國文學(xué)智慧樹知到答案章節(jié)測試2023年山東師范大學(xué)
- 醫(yī)院侵害未成年人案件強制報告制度培訓(xùn)課件
- 版管井及輕型井點降水施工方案
- YY/T 0506.6-2009病人、醫(yī)護人員和器械用手術(shù)單、手術(shù)衣和潔凈服第6部分:阻濕態(tài)微生物穿透試驗方法
- 《毛澤東思想概論》題庫
- 四年級必讀書目練習(xí)試題附答案
- 勞務(wù)派遣人員考核方案
- 意志力講解學(xué)習(xí)課件
評論
0/150
提交評論