2023年江蘇省南京市聯(lián)合體數(shù)學(xué)九年級第一學(xué)期期末達標(biāo)測試試題含解析_第1頁
2023年江蘇省南京市聯(lián)合體數(shù)學(xué)九年級第一學(xué)期期末達標(biāo)測試試題含解析_第2頁
2023年江蘇省南京市聯(lián)合體數(shù)學(xué)九年級第一學(xué)期期末達標(biāo)測試試題含解析_第3頁
2023年江蘇省南京市聯(lián)合體數(shù)學(xué)九年級第一學(xué)期期末達標(biāo)測試試題含解析_第4頁
2023年江蘇省南京市聯(lián)合體數(shù)學(xué)九年級第一學(xué)期期末達標(biāo)測試試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年江蘇省南京市聯(lián)合體數(shù)學(xué)九年級第一學(xué)期期末達標(biāo)測試試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.下列方程式屬于一元二次方程的是()A. B. C. D.2.將拋物線y=﹣3x2先向左平移1個單位長度,再向下平移2個單位長度,得到的拋物線的解析式是()A.y=﹣3(x﹣1)2﹣2 B.y=﹣3(x﹣1)2+2C.y=﹣3(x+1)2﹣2 D.y=﹣3(x+1)2+23.如圖所示,A,B是函數(shù)的圖象上關(guān)于原點O的任意一對對稱點,AC平行于y軸,BC平行于x軸,△ABC的面積為S,則()A.S=1 B.S=2 C.1<S<2 D.S>24.將拋物線y=x2先向上平移1個單位,再向左平移2個單位,則新的函數(shù)解析式為().A. B. C. D.5.如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°,則乙建筑物的高度為()米.A.30 B.30﹣30 C.30 D.306.如圖,是的直徑,弦于,連接、,下列結(jié)論中不一定正確的是()A. B. C. D.7.如圖,在平面直角坐標(biāo)系中,正方形的頂點在坐標(biāo)原點,點的坐標(biāo)為,點在第二象限,且反比例函數(shù)的圖像經(jīng)過點,則的值是()A.-9 B.-8 C.-7 D.-68.下列正多邊形中,繞其中心旋轉(zhuǎn)72°后,能和自身重合的是()A.正方形 B.正五邊形C.正六邊形 D.正八邊形9.小明同學(xué)發(fā)現(xiàn)自己一本書的寬與長之比是黃金比約為0.1.已知這本書的長為20cm,則它的寬約為()A.12.36cm B.13.6cm C.32.386cm D.7.64cm10.關(guān)于拋物線,下列結(jié)論中正確的是()A.對稱軸為直線B.當(dāng)時,隨的增大而減小C.與軸沒有交點D.與軸交于點11.如圖所示的網(wǎng)格是正方形網(wǎng)格,則sinA的值為()A. B. C. D.12.如圖,內(nèi)接于⊙,,,則⊙半徑為()A.4 B.6 C.8 D.12二、填空題(每題4分,共24分)13.分解因式:=____________.14.如圖,點、、、在射線上,點、、、在射線上,且,.若和的面積分別為和,則圖中三個陰影三角形面積之和為___________.15.若A(7,y1),B(5,y2),都是反比例函數(shù)的圖象上的點,則y1_____y2(填“<”、”﹣”或”>”).16.如圖,拋物線與軸的負(fù)半軸交于點,與軸交于點,連接,點分別是直線與拋物線上的點,若點圍成的四邊形是平行四邊形,則點的坐標(biāo)為__________.17.一元二次方程x(x﹣3)=3﹣x的根是____.18.方程(x﹣1)2=4的解為_____.三、解答題(共78分)19.(8分)近年來,“在初中數(shù)學(xué)教學(xué)候總使用計算器是否直接影響學(xué)生計算能力的發(fā)展”這一問題受到了廣泛關(guān)注,為此,某校隨機調(diào)查了n名學(xué)生對此問題的看法(看法分為三種:沒有影響,影響不大,影響很大),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計表和扇形統(tǒng)計圖,根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:n名學(xué)生對使用計算器影響計算能力的發(fā)展看法人數(shù)統(tǒng)計表看法

沒有影響

影響不大

影響很大

學(xué)生人數(shù)(人)

40

60

m

(1)求n的值;(2)統(tǒng)計表中的m=;(3)估計該校1800名學(xué)生中認(rèn)為“影響很大”的學(xué)生人數(shù).20.(8分)如圖,在△ABC中,利用尺規(guī)作圖,畫出△ABC的內(nèi)切圓.21.(8分)如圖,AB是半圓O的直徑,C為半圓弧上一點,在AC上取一點D,使BC=CD,連結(jié)BD并延長交⊙O于E,連結(jié)AE,OE交AC于F.(1)求證:△AED是等腰直角三角形;(2)如圖1,已知⊙O的半徑為.①求的長;②若D為EB中點,求BC的長.(3)如圖2,若AF:FD=7:3,且BC=4,求⊙O的半徑.22.(10分)某校為響應(yīng)全民閱讀活動,利用節(jié)假日面向社會開放學(xué)校圖書館,據(jù)統(tǒng)計,第一個月進館200人次,此后進館人次逐月增加,到第三個月進館達到288人次,若進館人次的月平均增長率相同.(1)求進館人次的月平均增長率;(2)因條件限制,學(xué)校圖書館每月接納能力不得超過400人次,若進館人次的月平均增長率不變,到第幾個月時,進館人數(shù)將超過學(xué)校圖書館的接納能力,并說明理由.23.(10分)(問題發(fā)現(xiàn))如圖1,半圓O的直徑AB=10,點P是半圓O上的一個動點,則△PAB的面積最大值是;(問題探究)如圖2所示,AB、AC、是某新區(qū)的三條規(guī)劃路,其中AB=6km,AC=3km,∠BAC=60°,所對的圓心角為60°.新區(qū)管委會想在路邊建物資總站點P,在AB、AC路邊分別建物資分站點E、F,即分別在、線段AB和AC上選取點P、E、F.由于總站工作人員每天要將物資在各物資站點間按P→E→F→P的路徑進行運輸,因此,要在各物資站點之間規(guī)劃道路PE、EF和FP.顯然,為了快捷環(huán)保和節(jié)約成本,就要使線段PE、EF、FP之和最短(各物資站點與所在道路之間的距離、路寬均忽略不計).可求得△PEF周長的最小值為km;(拓展應(yīng)用)如圖3是某街心花園的一角,在扇形OAB中,∠AOB=90°,OA=12米,在圍墻OA和OB上分別有兩個入口C和D,且AC=4米,D是OB的中點,出口E在上.現(xiàn)準(zhǔn)備沿CE、DE從入口到出口鋪設(shè)兩條景觀小路,在四邊形CODE內(nèi)種花,在剩余區(qū)域種草.①出口E設(shè)在距直線OB多遠(yuǎn)處可以使四邊形CODE的面積最大?最大面積是多少?(小路寬度不計)②已知鋪設(shè)小路CE所用的普通石材每米的造價是200元,鋪設(shè)小路DE所用的景觀石材每米的造價是400元.請問:在上是否存在點E,使鋪設(shè)小路CE和DE的總造價最低?若存在,求出最低總造價和出口E距直線OB的距離;若不存在,請說明理由.24.(10分)如圖,關(guān)于x的二次函數(shù)y=x2+bx+c的圖象與x軸交于點A(1,0)和點B與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.(1)求二次函數(shù)的表達式;(2)在y軸上是否存在一點P,使△PBC為等腰三角形?若存在.請求出點P的坐標(biāo);(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當(dāng)點M到達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.25.(12分)如圖,為反比例函數(shù)(其中)圖象上的一點,在軸正半軸上有一點.連接,且.(1)求的值;(2)過點作,交反比例函數(shù)(其中)的圖象于點,連接交于點,求的值.26.學(xué)校為了解九年級學(xué)生對“八禮四儀”的掌握情況,對該年級的500名同學(xué)進行問卷測試,并隨機抽取了10名同學(xué)的問卷,統(tǒng)計成績?nèi)缦拢旱梅?09876人數(shù)33211(1)計算這10名同學(xué)這次測試的平均得分;(2)如果得分不少于9分的定義為“優(yōu)秀”,估計這500名學(xué)生對“八禮四儀”掌握情況優(yōu)秀的人數(shù);(3)小明所在班級共有40人,他們?nèi)繀⒓恿诉@次測試,平均分為7.8分.小明的測試成績是8分,小明說,我的測試成績在班級中等偏上,你同意他的觀點嗎?為什么?

參考答案一、選擇題(每題4分,共48分)1、D【解析】根據(jù)一元二次方程的定義逐項進行判斷即可.【詳解】A、是一元三次方程,故不符合題意;B、是分式方程,故不符合題意;C、是二元二次方程,故不符合題意;D、是一元二次方程,符合題意.故選:D.【點睛】本題考查一元二次方程的定義,熟練掌握定義是關(guān)鍵.2、C【分析】根據(jù)“左加右減、上加下減”的原則進行解答即可.【詳解】解:將拋物線y=﹣3x1向左平移1個單位所得直線解析式為:y=﹣3(x+1)1;再向下平移1個單位為:y=﹣3(x+1)1﹣1,即y=﹣3(x+1)1﹣1.故選C.【點睛】此題主要考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.3、B【分析】設(shè)點A(m,),則根據(jù)對稱的性質(zhì)和垂直的特點,可以表示出B、C的坐標(biāo),根據(jù)坐標(biāo)關(guān)系得出BC、AC的長,從而得出△ABC的面積.【詳解】設(shè)點A(m,)∵A、B關(guān)于原點對稱∴B(-m,)∴C(m,)∴AC=,BC=2m∴=2故選:B【點睛】本題考查反比例函數(shù)和關(guān)于原點對稱點的求解,解題關(guān)鍵是表示出A、B、C的坐標(biāo),從而得出△ABC的面積.4、C【分析】由二次函數(shù)平移的規(guī)律即可求得答案.【詳解】解:將拋物線y=x2先向上平移1個單位,則函數(shù)解析式變?yōu)閥=x2+1,將y=x2+1向左平移2個單位,則函數(shù)解析式變?yōu)閥=(x+2)2+1,故選:C.【點睛】本題主要考查二次函數(shù)的圖象平移,掌握平移的規(guī)律是解題的關(guān)鍵,即“左加右減,上加下減”.5、B【分析】在Rt△BCD中,解直角三角形,可求得CD的長,即求得甲的高度,過A作AF⊥CD于點F,在Rt△ADF中解直角三角形可求得DF,則可求得CF的長,即可求得乙的高度.【詳解】解:如圖,過A作AF⊥CD于點F,

在Rt△BCD中,∠DBC=60°,BC=30m,

∵tan∠DBC=,

∴CD=BC?tan60°=30m,

∴甲建筑物的高度為30m;

在Rt△AFD中,∠DAF=45°,

∴DF=AF=BC=30m,

∴AB=CF=CD-DF=(30-30)m,

∴乙建筑物的高度為(30-30)m.

故選B.【點睛】本題主要考查解直角三角形的應(yīng)用-仰角俯角問題,構(gòu)造直角三角形,利用特殊角求得相應(yīng)線段的長是解題的關(guān)鍵.6、C【分析】根據(jù)垂徑定理及圓周角定理對各選項進行逐一分析即可.【詳解】解:∵CD是⊙O的直徑,弦AB⊥CD于E,

∴AE=BE,,故A、B正確;

∵CD是⊙O的直徑,

∴∠DBC=90°,故D正確.

故選:C.【點睛】本題考查的是垂徑定理,熟知平分弦的直徑平分這條弦,并且平分弦所對的兩條弧是解答此題的關(guān)鍵.7、B【分析】作AD⊥x軸于D,CE⊥x軸于E,先通過證得△AOD≌△OCE得出AD=OE,OD=CE,設(shè)A(x,),則C(,-x),根據(jù)正方形的性質(zhì)求得對角線解得F的坐標(biāo),即可得出,解方程組求得k的值.【詳解】解:如圖,作軸于,軸于連接AC,BO,∵,∴∵,∴.在和中,∴∴.設(shè),則.∵和互相垂直平分,點的坐標(biāo)為,∴交點的坐標(biāo)為,∴,解得,∴,故選.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,待定系數(shù)法求解析式,正方形的性質(zhì),全等三角形的判定和性質(zhì),熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.8、B【解析】選項A,正方形的最小旋轉(zhuǎn)角度為90°,繞其中心旋轉(zhuǎn)90°后,能和自身重合;選項B,正五邊形的最小旋轉(zhuǎn)角度為72°,繞其中心旋轉(zhuǎn)72°后,能和自身重合;選項C,正六邊形的最小旋轉(zhuǎn)角度為60°,繞其中心旋轉(zhuǎn)60°后,能和自身重合;選項D,正八邊形的最小旋轉(zhuǎn)角度為45°,繞其中心旋轉(zhuǎn)45°后,能和自身重合.故選B.9、A【分析】根據(jù)黃金分割的比值約為0.1列式進行計算即可得解.【詳解】解:∵書的寬與長之比為黃金比,書的長為20cm,∴書的寬約為20×0.1=12.36cm.故選:A.【點睛】本題考查了黃金比例的應(yīng)用,掌握黃金比例的比值是解題的關(guān)鍵.10、B【分析】根據(jù)二次函數(shù)的圖像與性質(zhì)即可得出答案.【詳解】A:對稱軸為直線x=-1,故A錯誤;B:當(dāng)時,隨的增大而減小,故B正確;C:頂點坐標(biāo)為(-1,-2),開口向上,所以與x軸有交點,故C錯誤;D:當(dāng)x=0時,y=-1,故D錯誤;故答案選擇B.【點睛】本題考查的是二次函數(shù),比較簡單,需要熟練掌握二次函數(shù)的圖像與性質(zhì).11、C【分析】設(shè)正方形網(wǎng)格中的小正方形的邊長為1,連接格點BC,AD,過C作CE⊥AB于E,解直角三角形即可得到結(jié)論.【詳解】解:設(shè)正方形網(wǎng)格中的小正方形的邊長為1,連接格點BC,AD,過C作CE⊥AB于E,∵,BC=2,AD=,∵S△ABC=AB?CE=BC?AD,∴CE=,∴,故選:C.【點睛】本題考查了解直角三角形的問題,掌握解直角三角形的方法以及銳角三角函數(shù)的定義是解題的關(guān)鍵.12、C【分析】連接OB,OC,根據(jù)圓周角定理求出∠BOC的度數(shù),再由OB=OC判斷出△OBC是等邊三角形,由此可得出結(jié)論.【詳解】解:連接OB,OC,∵∠BAC=30°,∴∠BOC=60°.∵OB=OC,BC=1,∴△OBC是等邊三角形,∴OB=BC=1.故選:C.【點睛】本題考查的是圓周角定理以及等邊三角形的判定和性質(zhì),根據(jù)題意作出輔助線,構(gòu)造出等邊三角形是解答此題的關(guān)鍵.二、填空題(每題4分,共24分)13、【解析】分析:利用平方差公式直接分解即可求得答案.解答:解:a2-b2=(a+b)(a-b).故答案為(a+b)(a-b).14、【分析】由已知可證,從而得到,利用和等高,可求出,同理求出另外兩個三角形的面積,則陰影部分的面積可求.【詳解】∵,.∴∴∵和的面積分別為和∴∵和等高∴∴同理可得∴陰影部分的面積為故答案為42【點睛】本題主要考查相似三角形的判定及性質(zhì),掌握相似三角形的判定方法及所求三角形與已知三角形之間的關(guān)系是解題的關(guān)鍵.15、<【分析】先根據(jù)反比例函數(shù)中k>0判斷出函數(shù)圖象所在的象限及增減性,再根據(jù)各點橫坐標(biāo)的特點即可得出結(jié)論.【詳解】∵反比例函數(shù)y=中,k=1>0,∴函數(shù)圖象的兩個分支分別位于一、三象限,且在每一象限內(nèi)y隨x的增大而減?。?>5,∴y1<y1.故答案為:<.【點睛】本題考查了反比例函數(shù)的圖象與性質(zhì),掌握反比例函數(shù)的增減性與比例系數(shù)k的符號之間的關(guān)系是關(guān)鍵.16、或或【分析】根據(jù)二次函數(shù)與x軸的負(fù)半軸交于點,與軸交于點.直接令x=0和y=0求出A,B的坐標(biāo).再根據(jù)平行四邊形的性質(zhì)分情況求出點E的坐標(biāo).【詳解】由拋物線的表達式求得點的坐標(biāo)分別為.由題意知當(dāng)為平行四邊形的邊時,,且,∴線段可由線段平移得到.∵點在直線上,①當(dāng)點的對應(yīng)點為時,如圖,需先將向左平移1個單位長度,此時點的對應(yīng)點的橫坐標(biāo)為,將代入,得,∴.②當(dāng)點A的對應(yīng)點為時,同理,先將向右平移2個單位長度,可得點的對應(yīng)點的橫坐標(biāo)為2,將代入得,∴當(dāng)為平行四邊形的對角線時,可知的中點坐標(biāo)為,∵在直線上,∴根據(jù)對稱性可知的橫坐標(biāo)為,將代入得,∴.綜上所述,點的坐標(biāo)為或或.【點睛】本題是二次函數(shù)的綜合題,主要考查了特殊點的坐標(biāo)的確定,平行四邊形的性質(zhì),解本題的關(guān)鍵是分情況解決問題的思想.17、x1=3,x2=﹣1.【分析】整體移項后,利用因式分解法進行求解即可.【詳解】x(x﹣3)=3﹣x,x(x﹣3)-(3﹣x)=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,故答案為x1=3,x2=﹣1.18、x1=3,x2=﹣1【解析】試題解析:(x﹣1)2=4,即x﹣1=±2,所以x1=3,x2=﹣1.故答案為x1=3,x2=﹣1.三、解答題(共78分)19、(1)200;(2)1;(3)900.【解析】試題分析:(1)將“沒有影響”的人數(shù)÷其占總?cè)藬?shù)百分比=總?cè)藬?shù)n即可;(2)用總?cè)藬?shù)減去“沒有影響”和“影響不大”的人數(shù)可得“影響很低”的人數(shù)m;(3)將樣本中“影響很大”的人數(shù)所占比例乘以該???cè)藬?shù)即可得.試題解析:(1)n=40÷20%=200(人).答:n的值為200;(2)m=200-40-60=1;(3)1800×=900(人).答:該校1800名學(xué)生中認(rèn)為“影響很大”的學(xué)生人數(shù)約為900人.故答案為(2)1.考點:1.扇形統(tǒng)計圖;2.用樣本估計總體.20、見解析【分析】分別作出三角形兩個內(nèi)角的角平分線,交點即為三角形的內(nèi)心,也就是三角形內(nèi)切圓的圓心,進而得出即可.【詳解】如圖所示【點睛】此題主要考查了復(fù)雜作圖,正確把握三角形內(nèi)心位置確定方法是解題關(guān)鍵.21、(1)見解析;(2)①;②;(3)【分析】(1)由已知可得△BCD是等腰直角三角形,所以∠CBD=∠EAD=45°,因為∠AEB=90°可證△AED是等腰直角三角形;(2)①已知可得∠EAD=45°,∠EOC=90°,則△EOC是等腰直角三角形,所以CE的弧長=×2×π×=;②由已知可得ED=BD,在Rt△ABE中,(2)2=AE2+(2AE)2,所以AE=2,AD=2,易證△AED∽△BCD,所以BC=;(3)由已知可得AF=AD,過點E作EG⊥AD于G,EG=AD,GF=AD,tan∠EFG=,得出FO=r,在Rt△COF中,F(xiàn)C=r,EF=r,在Rr△EFG中,由勾股定理,求出AD=r,AF=r,所以AC=AF+FC=,CD=BC=4,AC=4+AD,可得r=4+r,解出r即可.【詳解】解:(1)∵BC=CD,AB是直徑,∴△BCD是等腰直角三角形,∴∠CBD=45°,∵∠CBD=∠EAD=45°,∵∠AEB=90°,∴△AED是等腰直角三角形;(2)①∵∠EAD=45°,∴∠EOC=90°,∴△EOC是等腰直角三角形,∵⊙O的半徑為,∴CE的弧長=×2×π×=,故答案為:;②∵D為EB中點,∴ED=BD,∵AE=ED,在Rt△ABE中,(2)2=AE2+(2AE)2,∴AE=2,∴AD=2,∵ED=AE,CD=BC,∠AED=∠BCD=90°,∴△AED∽△BCD,∴BC=,故答案為:;(3)∵AF:FD=7:3,∴AF=AD,過點E作EG⊥AD于G,∴EG=AD,∴GF=AD,∴tan∠EFG=,∴==,∴FO=r,在Rt△COF中,F(xiàn)C=r,∴EF=r,在Rt△EFG中,(r)2=(AD)2+(AD)2,∴AD=r,∴AF=r,∴AC=AF+FC=r,∵CD=BC=4,∴AC=4+AD=4+r,∴r=4+r,∴r=,故答案為:.【點睛】本題考查了圓的基本性質(zhì),等腰直角三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理的應(yīng)用,弧長公式的計算,銳角三角函數(shù)定義的應(yīng)用,掌握相關(guān)圖形的性質(zhì)和應(yīng)用是解題的關(guān)鍵.22、(1)進館人次的月平均增長率為20%;(2)到第五個月時,進館人數(shù)將超過學(xué)校圖書館的接納能力,見解析【分析】(1)設(shè)進館人次的月平均增長率為x,根據(jù)第三個月進館達到288次,列方程求解;(2)根據(jù)(1)所計算出的月平均增長率,計算出第五個月的進館人次,再與400比較大小即可.【詳解】(1)設(shè)進館人次的月平均增長率為x,根據(jù)題意,得:200(1+x)2=288解得:x1=0.2,x2=﹣2.2(舍去).答:進館人次的月平均增長率為20%.(2)第四個月進館人數(shù)為288(1+0.2)=345.6(人次),第五個月進館人數(shù)為288(1+0.2)2=414.1(人次),由于400<414.1.答:到第五個月時,進館人數(shù)將超過學(xué)校圖書館的接納能力.【點睛】本題考查了一元二次方程的應(yīng)用-增長率問題,列出方程是解答本題的關(guān)鍵.本題難度適中,屬于中檔題.23、[問題發(fā)現(xiàn)]15;[問題探究];[拓展應(yīng)用]①出口E設(shè)在距直線OB的7.1米處可以使四邊形CODE的面積最大為60平方米,②出口E距直線OB的距離為米.【分析】[問題發(fā)現(xiàn)]△PAB的底邊AB一定,面積最大也就是P點到AB的距離最大,故當(dāng)OP⊥AB時,時最大,值是5,再計算此時△PAB面積即可;[問題探究]先由對稱將折線長轉(zhuǎn)化線段長,即分別以、所在直線為對稱軸,作出關(guān)于的對稱點為,關(guān)于的對稱點為,連接,易求得:,而,即當(dāng)最小時,可取得最小值.[拓展應(yīng)用]①四邊形CODE面積=S△CDO+S△CDE′,求出S△CDE′面積最大時即可;②先利用相似三角形將費用問題轉(zhuǎn)化為CE+1DE=CE+QE,求CE+QE的最小值問題.然后利用相似三角形性質(zhì)和勾股定理求解即可?!驹斀狻縖問題發(fā)現(xiàn)]解:當(dāng)OP⊥AB時,時最大,,此時△APB的面積=,故答案為:15;[問題探究]解:如圖1-1,連接,,分別以、所在直線為對稱軸,作出關(guān)于的對稱點為,關(guān)于的對稱點為,連接,交于點,交于點,連接、,,,,,、、在以為圓心,為半徑的圓上,設(shè),易求得:,,,,當(dāng)最小時,可取得最小值,,,即點在上時,可取得最小值,如圖1-1,如圖1-3,設(shè)的中點為,,,,,,由勾股定理可知:,,,是等邊三角形,,由勾股定理可知:,,,的最小值為.故答案為:[拓展應(yīng)用]①如圖,作OG⊥CD,垂足為G,延長OG交于點E′,則此時△CDE的面積最大.∵OA=OB=11,AC=4,點D為OB的中點,∴OC=8,OD=6,在Rt△COD中,CD=10,OG=4.8,∴GE′=11-4.8=7.1,∴四邊形CODE面積的最大值為S△CDO+S△CDE′=×6×8+×10×7.1=60,作E′H⊥OB,垂足為H,則E′H=OE′=×11=7.1.答:出口E設(shè)在距直線OB的7.1米處可以使四邊形CODE的面積最大為60平方米.②鋪設(shè)小路CE和DE的總造價為100CE+400DE=100(CE+1DE).如圖,連接OE,延長OB到點Q,使BQ=OB=11,連接EQ.在△EOD與△QOE中,∠EOD=∠QOE,且,∴△EOD∽△QOE,故QE=1DE.于是CE+1DE=CE+QE,問題轉(zhuǎn)化為求CE+QE的最小值.連接CQ,交于點E′,此時CE+QE取得最小值為CQ,在Rt△COQ中,CO=8,OQ=14,∴CQ=8,故總造價的最小值為1600.作E′H⊥OB,垂足為H,連接OE′,設(shè)E′H=x,則QH=3x,在Rt△E′OH中,,解得(舍去),∴出口E距直線OB的距離為米.【點睛】本題考查圓的綜合問題,涉及軸對稱的性質(zhì),勾股定理,垂徑定理,解直角三角形等知識,綜合程度極高,需要學(xué)生靈活運用知識.解題關(guān)鍵是:利用對稱或相似靈活地將折線長和轉(zhuǎn)化為線段長,從而求折線段的最值。24、(1)二次函數(shù)的表達式為:y=x2﹣4x+3;(2)點P的坐標(biāo)為:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)當(dāng)點M出發(fā)1秒到達D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程組,解方程組即可得二次函數(shù)的表達式;(2)先求出點B的坐標(biāo),再根據(jù)勾股定理求得BC的長,當(dāng)△PBC為等腰三角形時分三種情況進行討論:①CP=CB;②PB=PC;③BP=BC;分別根據(jù)這三種情況求出點P的坐標(biāo);(3)設(shè)AM=t則DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化為頂點式,根據(jù)二次函數(shù)的性質(zhì)即可得△MNB最大面積;此時點M在D點,點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【詳解】解:(1)把A(1,0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論