




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023年山東省菏澤牡丹區(qū)六校聯(lián)考九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,在一個周長為10m的長方形窗戶上釘上一塊寬為1m的長方形遮陽布,使透光部分正好是一個正方形,則釘好后透光部分的面積為()A.9m2 B.25m2 C.16m2 D.4m22.如圖,在矩形中,,在上取一點,沿將向上折疊,使點落在上的點處,若四邊形與矩形相似,則的長為()A. B. C. D.13.如圖所示的幾何體為圓臺,其俯視圖正確的是A. B. C. D.4.如圖,AB是半圓的直徑,O為圓心,C是半圓上的點,D是上的點,若∠D=110°,則∠AOC的度數(shù)為()A.130° B.135° C.140° D.145°5.成語“水中撈月”所描述的事件是().A.必然事件 B.隨機(jī)事件 C.不可能事件 D.無法確定6.如圖,是的直徑,是的弦,若,則().A. B. C. D.7.在△ABC中,若tanA=1,sinB=,你認(rèn)為最確切的判斷是()A.△ABC是等腰三角形 B.△ABC是等腰直角三角形C.△ABC是直角三角形 D.△ABC是一般銳角三角形8.附城二中到聯(lián)安鎮(zhèn)為5公里,某同學(xué)騎車到達(dá),那么時間t與速度(平均速度)v之間的函數(shù)關(guān)系式是()A.v=5t B.v=t+5 C.v= D.v=9.如圖,是⊙的直徑,弦⊥于點,,則()A. B. C. D.10.如圖:已知AB=10,點C、D在線段AB上且AC=DB=2;P是線段CD上的動點,分別以AP、PB為邊在線段AB的同側(cè)作等邊△AEP和等邊△PFB,連接EF,設(shè)EF的中點為G;當(dāng)點P從點C運動到點D時,則點G移動路徑的長是()A.5 B.4 C.3 D.0二、填空題(每小題3分,共24分)11.在△ABC中,∠C=90°,cosA=,則tanA等于.12.某商品原售價300元,經(jīng)過連續(xù)兩次降價后售價為260元,設(shè)平均每次降價的百分率為x,則滿足x的方程是______.13.二次函數(shù)y=2x2﹣5kx﹣3的圖象經(jīng)過點M(﹣2,10),則k=_____.14.如圖所示,在中,,將繞點旋轉(zhuǎn),當(dāng)點與點重合時,點落在點處,如果,,那么的中點和的中點的距離是______.15.若用αn表示正n邊形的中心角,則邊長為4的正十二邊形的中心角是____.16.函數(shù)中自變量x的取值范圍是________.17.在一個不透明的盒子里裝有5個分別寫有數(shù)字0,1,2,3,4的小球,它們除數(shù)字不同外其余全部相同.現(xiàn)從盒子里隨機(jī)摸出一個小球(不放回),設(shè)該小球上的數(shù)字為m,再從盒子中摸出一個小球,設(shè)該小球上的數(shù)字為n,點P的坐標(biāo)為,則點P落在拋物線與x軸所圍成的區(qū)域內(nèi)(含邊界)的概率是________.18.一個圓錐的底面圓的半徑為3,母線長為9,則該圓錐的側(cè)面積為__________.三、解答題(共66分)19.(10分)一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同.(1)攪勻后從袋子中任意摸出1個球,摸到紅球的概率是多少?(2)攪勻后先從袋子中任意摸出1個球,記錄顏色后不放回,再從袋子中任意摸出1個球,用畫樹狀圖或列表的方法列出所有等可能的結(jié)果,并求出兩次都摸到白球的概率.20.(6分)如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果點P由點B出發(fā)沿BA方向向點A勻速運動,同時點Q由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為1cm/s.連接PQ,設(shè)運動時間為t(s)(0<t<4),解答下列問題:(1)設(shè)△APQ的面積為S,當(dāng)t為何值時,S取得最大值,S的最大值是多少;(2)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當(dāng)四邊形PQP′C為菱形時,求t的值;(3)當(dāng)t為何值時,△APQ是等腰三角形.21.(6分)(1)如圖1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的長.(2)如圖2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的長.22.(8分)如圖,正三角形ABC內(nèi)接于⊙O,若AB=4cm,求⊙O的直徑及正三角形ABC的面積.23.(8分)學(xué)生會組織周末愛心義賣活動,義賣所得利潤將全部捐獻(xiàn)給希望工程,活動選在一塊長米、寬米的矩形空地上.如圖,空地被劃分出個矩形區(qū)域,分別擺放不同類別的商品,區(qū)域之間用寬度相等的小路隔開,已知每個區(qū)域的面積均為平方米,小路的寬應(yīng)為多少米?24.(8分)在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a≠0)的頂點A(-3,0),與y軸交于點B(0,4),在第一象限內(nèi)有一點P(m,n),且滿足4m+3n=12.(1)求二次函數(shù)解析式.(2)若以點P為圓心的圓與直線AB、x軸相切,求點P的坐標(biāo).(3)若點A關(guān)于y軸的對稱點為點A′,點C在對稱軸上,且2∠CBA+∠PA′O=90?.求點C的坐標(biāo).25.(10分)如圖,在長方形中,,,動點、分別從點、同時出發(fā),點以2厘米/秒的速度向終點移動,點以1厘米/秒的速度向移動,當(dāng)有一點到達(dá)終點時,另一點也停止運動.設(shè)運動的時間為,問:(1)當(dāng)秒時,四邊形面積是多少?(2)當(dāng)為何值時,點和點距離是?(3)當(dāng)_________時,以點、、為頂點的三角形是等腰三角形.(直接寫出答案)26.(10分)某農(nóng)場今年第一季度的產(chǎn)值為50萬元,第二季度由于改進(jìn)了生產(chǎn)方法,產(chǎn)值提高了;但在今年第三、第四季度時該農(nóng)場因管理不善.導(dǎo)致其第四季度的產(chǎn)值與第二季度的產(chǎn)值相比下降了11.4萬元.(1)求該農(nóng)場在第二季度的產(chǎn)值;(2)求該農(nóng)場在第三、第四季度產(chǎn)值的平均下降的百分率.
參考答案一、選擇題(每小題3分,共30分)1、D【解析】根據(jù)矩形的周長=(長+寬)×1,正方形的面積=邊長×邊長,列出方程求解即可.【詳解】解:若設(shè)正方形的邊長為am,
則有1a+1(a+1)=10,
解得a=1,故正方形的面積為4m1,即透光面積為4m1.
故選D.【點睛】此題考查了一元一次方程的應(yīng)用,主要考查了長方形的周長及正方形面積的求法,屬于基礎(chǔ)題,難度一般.2、C【分析】可設(shè)AD=x,由四邊形EFDC與矩形ABCD相似,根據(jù)相似多邊形對應(yīng)邊的比相等列出比例式,求解即可.【詳解】解:∵AB=1,可得AF=BE=1,
設(shè)DF=x,則AD=x+1,F(xiàn)E=1,
∵四邊形EFDC與矩形ABCD相似,∴,即:,解得,(不合題意舍去),經(jīng)檢驗是原方程的解,∴DF的長為,故選C.【點睛】本題考查了翻折變換(折疊問題),相似多邊形的性質(zhì),本題的關(guān)鍵是根據(jù)四邊形EFDC與矩形ABCD相似得到比例式.3、C【解析】試題分析:俯視圖是從物體上面看,所得到的圖形.從幾何體的上面看所得到的圖形是兩個同心圓.故選C.考點:簡單幾何體的三視圖4、C【分析】根據(jù)“圓內(nèi)接四邊形的對角互補(bǔ)”,由∠D可以求得∠B,再由圓周角定理可以求得∠AOC的度數(shù).【詳解】解:∵∠D=110°,∴∠B=180°﹣110°=70°,∴∠AOC=2∠B=140°,故選C.【點睛】本題考查圓周角定理及圓內(nèi)接四邊形的性質(zhì),熟練掌握有關(guān)定理和性質(zhì)的應(yīng)用是解題關(guān)鍵.5、C【分析】根據(jù)必然事件、不可能事件、隨機(jī)事件的概念進(jìn)行解答即可.【詳解】水中撈月是不可能事件.故選C.【點睛】本題考查了必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.6、B【分析】根據(jù)AB是⊙O的直徑得出∠ADB=90°,再求出∠A的度數(shù),由圓周角定理即可推出∠BCD的度數(shù).【詳解】∵AB是⊙O的直徑,∴∠ADB=90°,∴在Rt△ABD中,∠A=90°﹣∠ABD=34°,∵弧BD=弧BD,∴∠BCD=∠A=34°,故選B.【點睛】本題考查圓周角定理及其推論,熟練掌握圓周角定理是解題的關(guān)鍵.7、B【分析】試題分析:由tanA=1,sinB=結(jié)合特殊角的銳角三角函數(shù)值可得∠A、∠B的度數(shù),即可判斷△ABC的形狀.【詳解】∵tanA=1,sinB=∴∠A=45°,∠B=45°∴△ABC是等腰直角三角形故選B.考點:特殊角的銳角三角函數(shù)值點評:本題是特殊角的銳角三角函數(shù)值的基礎(chǔ)應(yīng)用題,在中考中比較常見,一般以選擇題、填空題形式出現(xiàn),難度一般.8、C【分析】根據(jù)速度=路程÷時間即可寫出時間t與速度(平均速度)v之間的函數(shù)關(guān)系式.【詳解】∵速度=路程÷時間,∴v=.故選C.【點睛】此題主要考查反比例函數(shù)的定義,解題的關(guān)鍵是熟知速度路程的公式.9、A【分析】根據(jù)垂徑定理可得出CE的長度,在Rt△OCE中,利用勾股定理可得出OE的長度,再利用AE=AO+OE即可得出AE的長度.【詳解】∵弦CD⊥AB于點E,CD=8cm,∴CE=CD=4cm.在Rt△OCE中,OC=5cm,CE=4cm,∴OE==3cm,∴AE=AO+OE=5+3=8cm.故選A.【點睛】本題考查了垂徑定理以及勾股定理,利用垂徑定理結(jié)合勾股定理求出OE的長度是解題的關(guān)鍵.10、C【分析】本題通過做輔助線構(gòu)造新三角形,繼而利用等邊三角形性質(zhì)求證四邊形HFPE為平行四邊形,進(jìn)一步結(jié)合點G中點性質(zhì)確定點G運動路徑為△HCD中位線,最后利用中位線性質(zhì)求解.【詳解】延長AE與BF使其相交于點H,連接HC、HD、HP,如下圖所示:由已知得:∠A=∠FPB=60°,∠B=∠EPA=60°,∴AH∥PF,BH∥PE,∴四邊形HFPE為平行四邊形,∴EF與PH互相平分,又∵點G為EF中點,∴點G為PH中點,即在點P運動過程中,點G始終為PH的中點,故點G的運動軌跡為△HCD的中位線MN.∵,,∴,∴,即點G的移動路徑長為1.故選:C.【點睛】本題考查等邊三角形性質(zhì)以及動點問題,此類型題目難點在于輔助線的構(gòu)造,需要多做類似題目積累題感,涉及動點運動軌跡時,其路徑通常是較為特殊的線段或圖形,例如中位線或圓.二、填空題(每小題3分,共24分)11、.【解析】試題分析:∵在△ABC中,∠C=90°,cosA=,∴.∴可設(shè).∴根據(jù)勾股定理可得.∴.考點:1.銳角三角函數(shù)定義;2.勾股定理.12、.【分析】根據(jù)降價后的售價=降價前的售價×(1-平均每次降價的百分率),可得降價一次后的售價是,降價一次后的售價是,再根據(jù)經(jīng)過連續(xù)兩次降價后售價為260元即得方程.【詳解】解:由題意可列方程為故答案為:.【點睛】本題考查一元二次方程的實際應(yīng)用,增長率問題,解題的關(guān)鍵是讀懂題意,找到等量關(guān)系,正確列出方程,要注意增長的基礎(chǔ).13、.【分析】點M(﹣2,10),代入二次函數(shù)y=2x2﹣5kx﹣3即可求出k的值.【詳解】把點M(﹣2,10),代入二次函數(shù)y=2x2﹣5kx﹣3得,8+10k﹣3=10,解得,k=,故答案為:.【點睛】本題考查求二次函數(shù)解析式的系數(shù),解題的關(guān)鍵是將圖象上的點坐標(biāo)代入函數(shù)解析式.14、4【分析】設(shè),在中,,得.由勾股定理,再求AM,AB,證,.得,,可得.【詳解】如圖所示,,是的中點,,,.設(shè),在中,,.,.,.,,,可得,同理可證.,,.故答案為:4【點睛】考核知識點:解直角三角形.構(gòu)造直角三角形,利用三角形相關(guān)知識分析問題是關(guān)鍵.15、30o【分析】根據(jù)正多邊形的中心角的定義,可得正十二邊形的中心角是:360°÷12=30°.【詳解】正十二邊形的中心角是:360°÷12=30°.故答案為:30o.【點睛】此題考查了正多邊形的中心角.此題比較簡單,注意準(zhǔn)確掌握定義是關(guān)鍵.16、x≥-1且x≠1.【分析】根據(jù)二次根式的被開方數(shù)非負(fù)和分式的分母不為0可得關(guān)于x的不等式組,解不等式組即可求得答案.【詳解】解:根據(jù)題意,得,解得x≥-1且x≠1.故答案為x≥-1且x≠1.【點睛】本題考查了二次根式有意義的條件和分式有意義的條件,難度不大,屬于基礎(chǔ)題型.17、【分析】采用畫樹狀圖法寫出的所有可能出現(xiàn)的結(jié)果,畫出函數(shù)圖像,并描出在拋物線與x軸所圍成的區(qū)域內(nèi)(含邊界)點,再用符合題意的點的個數(shù)除以總個數(shù),即可求出答案.【詳解】如圖,由樹狀圖可知共有20種等可能結(jié)果,由坐標(biāo)系可知,在拋物線與x軸所圍成的區(qū)域內(nèi)(含邊界)的點有(0,0)、(1,3),(2,0)、(3,3),(3,0),(4,0),共6種結(jié)果,∴點在拋物線上的概率是=,故答案為:.【點睛】此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.18、【分析】先求出底面圓的周長,然后根據(jù)扇形的面積公式:即可求出該圓錐的側(cè)面積.【詳解】解:底面圓的周長為,即圓錐的側(cè)面展開后的弧長為,∵母線長為9,∴圓錐的側(cè)面展開后的半徑為9,∴圓錐的側(cè)面積故答案為:【點睛】此題考查的是求圓錐的側(cè)面積,掌握扇形的面積公式:是解決此題的關(guān)鍵.三、解答題(共66分)19、(1);(2),見解析【分析】(1)袋中一共有3個球,有3種等可能的抽取情況,抽取紅球的情況只有1種,摸到紅球的概率即可求出;(2)分別使用樹狀圖法或列表法將抽取球的結(jié)果表示出來,第一次共有3種不同的抽取情況,第二次有2種不同的抽取情況,所有等可能出現(xiàn)的結(jié)果有6種,找出兩次都是白球的的抽取結(jié)果,即可算出概率.【詳解】解:(1)∵袋中一共有3個球,有3種等可能的抽取情況,抽取紅球的情況只有1種,∴;(2)畫樹狀圖,根據(jù)題意,畫樹狀圖結(jié)果如下:一共有6種等可能出現(xiàn)的結(jié)果,兩次都抽取到白球的次數(shù)為2次,∴;用列表法,根據(jù)題意,列表結(jié)果如下:一共有6種等可能出現(xiàn)的結(jié)果,兩次都抽取到白球的次數(shù)為2次,∴.【點睛】本題考查了列表法或樹狀圖法求概率,用圖表的形式將第一次、第二次抽取所可能發(fā)生的情況一一列出,避免遺漏.20、(1)當(dāng)t為秒時,S最大值為;(1);(3)或或.【分析】(1)過點P作PH⊥AC于H,由△APH∽△ABC,得出,從而求出AB,再根據(jù),得出PH=3﹣t,則△AQP的面積為:AQ?PH=t(3﹣t),最后進(jìn)行整理即可得出答案;(1)連接PP′交QC于E,當(dāng)四邊形PQP′C為菱形時,得出△APE∽△ABC,,求出AE=﹣t+4,再根據(jù)QE=AE﹣AQ,QE=QC得出﹣t+4=﹣t+1,再求t即可;(3)由(1)知,PD=﹣t+3,與(1)同理得:QD=﹣t+4,從而求出PQ=,在△APQ中,分三種情況討論:①當(dāng)AQ=AP,即t=5﹣t,②當(dāng)PQ=AQ,即=t,③當(dāng)PQ=AP,即=5﹣t,再分別計算即可.【詳解】解:(1)如圖甲,過點P作PH⊥AC于H,∵∠C=90°,∴AC⊥BC,∴PH∥BC,∴△APH∽△ABC,∴,∵AC=4cm,BC=3cm,∴AB=5cm,∴,∴PH=3﹣t,∴△AQP的面積為:S=×AQ×PH=×t×(3﹣t)=﹣(t﹣)1+,∴當(dāng)t為秒時,S最大值為cm1.(1)如圖乙,連接PP′,PP′交QC于E,當(dāng)四邊形PQP′C為菱形時,PE垂直平分QC,即PE⊥AC,QE=EC,∴△APE∽△ABC,∴,∴AE==﹣t+4QE=AE﹣AQ═﹣t+4﹣t=﹣t+4,QE=QC=(4﹣t)=﹣t+1,∴﹣t+4=﹣t+1,解得:t=,∵0<<4,∴當(dāng)四邊形PQP′C為菱形時,t的值是s;(3)由(1)知,PD=﹣t+3,與(1)同理得:QD=AD﹣AQ=﹣t+4∴PQ==,在△APQ中,①當(dāng)AQ=AP,即t=5﹣t時,解得:t1=;②當(dāng)PQ=AQ,即=t時,解得:t1=,t3=5;③當(dāng)PQ=AP,即=5﹣t時,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0不合題意,舍去,∴當(dāng)t為s或s或s時,△APQ是等腰三角形.【點睛】本題考查相似形綜合題.21、(1)AD=9;(2)AD=【分析】(1)連接BE,證明△ACD≌△BCE,得到AD=BE,在Rt△BAE中,AB=6,AE=3,求出BE,得到答案;(2)連接BE,證明△ACD∽△BCE,得到,求出BE的長,得到AD的長.【詳解】解:(1)如圖1,連接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE=9,∴AD=9;(2)如圖2,連接BE,在Rt△ACB中,∠ABC=∠CED=30°,tan30°=,∵∠ACB=∠DCE=90°,∴∠BCE=∠ACD,∴△ACD∽△BCE,∴,∵∠BAC=60°,∠CAE=30°,∴∠BAE=90°,又AB=6,AE=8,∴BE=10,∴AD=.考點:相似三角形的判定與性質(zhì);全等三角形的判定與性質(zhì);勾股定理.22、⊙O的直徑為8cm,正三角形ABC的面積為12cm2【分析】根據(jù)圓內(nèi)接正三角形的性質(zhì)即可求解.【詳解】解:如圖所示:連接CO并延長與AB交于點D,連接AO,∵點O是正三角形ABC的外心,∴CD⊥AB,∠OAD=30°,設(shè)OD=x,則,根據(jù)勾股定理,得,解得x=4,則x=2,∴半徑OA=4cm,直徑為8cm.∴CD=3x=6,∴.答:⊙O的直徑為8cm;正三角形ABC的面積為12cm2【點睛】本題考查了三角形的外接圓與外心、等邊三角形的性質(zhì),解決本題的關(guān)鍵是掌握圓內(nèi)接正三角形的性質(zhì).23、小路的寬應(yīng)為米.【分析】設(shè)每條道路的寬為米,則活動區(qū)域可以看成長為米、寬為米的矩形,根據(jù)矩形的面積公式結(jié)合活動區(qū)域的面積為平方米,即可得出關(guān)于的一元二次方程,解之取其較小值即可得出結(jié)論.【詳解】設(shè)小路寬度為米,由題意,可列方程如下:解得:;(舍去)答:小路的寬應(yīng)為米.【點睛】本題考查了一元二次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.24、(1);(2)P(,);(3)C(-3,-5)或(-3,)【分析】(1)設(shè)頂點式,將B點代入即可求;(2)根據(jù)4m+3n=12確定點P所在直線的解析式,再根據(jù)內(nèi)切線的性質(zhì)可知P點在∠BAO的角平分線上,求兩線交點坐標(biāo)即為P點坐標(biāo);(3)根據(jù)角之間的關(guān)系確定C在∠DBA的角平分線與對稱軸的交點或∠ABO的角平分線與對稱軸的交點,通過求角平分線的解析式即可求.【詳解】(1)∵拋物線的頂點坐標(biāo)為A(-3,0),設(shè)二次函數(shù)解析式為y=a(x+3)2,將B(0,4)代入得,4=9a∴a=∴(2)如圖∵P(m,n),且滿足4m+3n=12∴∴點P在第一象限的上,∵以點P為圓心的圓與直線AB、x軸相切,∴點P在∠BAO的角平分線上,∠BAO的角平分線:y=,∴,∴x=,∴y=∴P(,)(3)C(-3,-5)或(-3,)理由如下:如圖,A′(3,0),可得直線LA′B的表達(dá)式為,∴P點在直線A′B上,∵∠PA′O=∠ABO=∠BAG,2∠CBA+∠PA′O=90°,∴2∠CBA=90°-∠PA′O=∠GAB,在對稱軸上取點D,使∠DBA=∠DAB,作BE⊥AG于G點,設(shè)D點坐標(biāo)為(-3,t)則有(4-t)2+32=t2t=,∴D(-3,),作∠DBA的角平分線交AG于點C即為所求點,設(shè)為C1∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度證件外借風(fēng)險評估與管理合同
- 洗衣店裝修簡易協(xié)議
- 二零二五年度商場家居用品柜臺租賃管理合同
- 2025年度建筑工程施工環(huán)境保護(hù)責(zé)任協(xié)議書
- 2025年度供應(yīng)鏈物流保密協(xié)議合同
- 文化產(chǎn)業(yè)借款融資居間合同
- 2025年度農(nóng)村土地承包經(jīng)營權(quán)流轉(zhuǎn)及農(nóng)業(yè)產(chǎn)業(yè)結(jié)構(gòu)調(diào)整合作合同
- 2025年度企業(yè)兼職市場營銷人員勞務(wù)合同模板
- 2025年度房產(chǎn)贈與資產(chǎn)重組合同
- 2025年度人工智能系統(tǒng)維護(hù)與數(shù)據(jù)安全合同
- 人教版初中歷史與社會七年級下冊 6.3.3向西開放的重要門戶-烏魯木齊 說課稿
- 綜合材料繪畫課程設(shè)計
- 數(shù)學(xué)史簡介課件
- 八年級 下冊《黃河兩岸的歌(1)》課件
- 春季安全教育培訓(xùn)課件
- T-CIAPS 0035-2024 儲能電池液冷散熱器
- 《ZN真空斷路器》課件
- 2024年低壓電工特種作業(yè)證考試題庫模擬考試及答案
- 《山東修繕交底培訓(xùn)》課件
- 2024.8.1十七個崗位安全操作規(guī)程手冊(值得借鑒)
- 缺血性心臟病麻醉
評論
0/150
提交評論