版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
銅仁市2022~2023學(xué)年度第一學(xué)期期末質(zhì)量監(jiān)測(cè)試卷高二數(shù)學(xué)本試卷共4頁(yè),22題,全卷滿分150分.考試用時(shí)120分鐘.注意事項(xiàng):1.答題前,先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在試卷和答題卡上,并將準(zhǔn)考證號(hào)條形碼粘貼在答題卡上的指定位置.2.選擇題的作答:每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑.寫(xiě)在試卷、草稿紙和答題卡上的非答題區(qū)域均無(wú)效.3.非選擇題的作答:用黑色簽字筆直接答在答題卡上對(duì)應(yīng)的答題區(qū)域內(nèi).寫(xiě)在試卷、草稿紙和答題卡上的非答題區(qū)域均無(wú)效.4.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并上交.一、選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.直線SKIPIF1<0的傾斜角是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】【分析】直線SKIPIF1<0即SKIPIF1<0,故直線的斜率為SKIPIF1<0設(shè)直線的傾斜角為SKIPIF1<0則SKIPIF1<0,且SKIPIF1<0故SKIPIF1<0故選SKIPIF1<0【詳解】2.若直線SKIPIF1<0經(jīng)過(guò)兩點(diǎn)SKIPIF1<0,SKIPIF1<0且與直線SKIPIF1<0平行,則SKIPIF1<0()A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)直線平行,即斜率相等,結(jié)合斜率兩點(diǎn)式列方程求參數(shù)即可.【詳解】由題意SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0.故選:D3.為了進(jìn)一步學(xué)習(xí)貫徹黨的二十大精神,推進(jìn)科普宣傳教育,激發(fā)學(xué)生的學(xué)習(xí)熱情,營(yíng)造良好的學(xué)習(xí)筑圍,不斷提高學(xué)生對(duì)科學(xué)、法律、健康等知識(shí)的了解,某學(xué)校組織高一10個(gè)班級(jí)的學(xué)生開(kāi)展“紅色百年路·科普萬(wàn)里行”知識(shí)競(jìng)賽.統(tǒng)計(jì)發(fā)現(xiàn),10個(gè)班級(jí)的平均成績(jī)恰好成等差數(shù)列,最低平均成績(jī)?yōu)?0,公差為2,則這10個(gè)班級(jí)的平均成績(jī)的第40百分位數(shù)為()A.76 B.77 C.78 D.80【答案】B【解析】【分析】先利用等差數(shù)列的首項(xiàng)和公差求出通項(xiàng)公式,再利用百分位數(shù)的概念求解即可.【詳解】記10個(gè)班級(jí)的平均成績(jī)形成的等差數(shù)列為SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以這10個(gè)班級(jí)的平均成績(jī)的第40百分位數(shù)為SKIPIF1<0.故選:B4.過(guò)拋物線SKIPIF1<0的焦點(diǎn)SKIPIF1<0作直線,交拋物線于SKIPIF1<0,SKIPIF1<0兩點(diǎn),若SKIPIF1<0,則SKIPIF1<0()A.1 B.2 C.3 D.4【答案】C【解析】【分析】如圖所示,由題得SKIPIF1<0,利用拋物線的定義化簡(jiǎn)SKIPIF1<0即得解.【詳解】如圖所示,由題得SKIPIF1<0,拋物線的準(zhǔn)線方程為SKIPIF1<0.所以SKIPIF1<0.故選:C5.已知向量SKIPIF1<0是平面SKIPIF1<0的法向量,SKIPIF1<0是直線SKIPIF1<0的方向向量,若SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.4 C.SKIPIF1<0 D.2【答案】C【解析】【分析】由SKIPIF1<0可得SKIPIF1<0,求解即可.【詳解】因?yàn)镾KIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,則SKIPIF1<0.故選:C.6.已知正四棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0和SKIPIF1<0的中點(diǎn),SKIPIF1<0是線段SKIPIF1<0的中點(diǎn),則直線SKIPIF1<0和SKIPIF1<0所成角的余弦值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】【分析】建立空間直角坐標(biāo)系,寫(xiě)出相關(guān)點(diǎn)的坐標(biāo),根據(jù)向量法求解即可.【詳解】如圖建立空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以異面直線SKIPIF1<0和SKIPIF1<0所成角的余弦值為SKIPIF1<0.故選:D.7.如圖,在三棱錐SKIPIF1<0中,點(diǎn)SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0是SKIPIF1<0的中點(diǎn),設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,用SKIPIF1<0,SKIPIF1<0,SKIPIF1<0表示SKIPIF1<0,則SKIPIF1<0()ASKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】根據(jù)空間向量的線性運(yùn)算計(jì)算得解.【詳解】因?yàn)镾KIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:A8.若對(duì)圓SKIPIF1<0上任意一點(diǎn)SKIPIF1<0,SKIPIF1<0的取值與SKIPIF1<0,SKIPIF1<0無(wú)關(guān),則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】【分析】將SKIPIF1<0轉(zhuǎn)化為點(diǎn)到直線的距離,數(shù)形結(jié)合,可求出SKIPIF1<0的取值范圍.【詳解】依題意SKIPIF1<0表示SKIPIF1<0到兩條平行直線SKIPIF1<0和SKIPIF1<0的距離之和的5倍.因?yàn)檫@個(gè)距離之和與x,y無(wú)關(guān),故兩條平行直線SKIPIF1<0和SKIPIF1<0在圓SKIPIF1<0的兩側(cè),如圖所示,故圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0在圓的右下方,不滿足題意,所以舍去.所以SKIPIF1<0.故選:A二、選擇題:本大題共4小題,每小題5分,共20分.在每小題給出的四個(gè)選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)的得5分,部分選對(duì)的得2分,有選錯(cuò)的得0分.9.數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,已知SKIPIF1<0,則下列說(shuō)法正確的是()A.SKIPIF1<0是遞增數(shù)列B.SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0D.當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0取得最大值【答案】BCD【解析】【分析】根據(jù)SKIPIF1<0表達(dá)式及SKIPIF1<0時(shí),SKIPIF1<0的關(guān)系,算出數(shù)列SKIPIF1<0通項(xiàng)公式,即可判斷每個(gè)選項(xiàng)的正誤.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0是遞減的等差數(shù)列,故A錯(cuò)誤;SKIPIF1<0,故B正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故C正確;因?yàn)镾KIPIF1<0的對(duì)稱軸為SKIPIF1<0,開(kāi)口向下,而SKIPIF1<0是正整數(shù),且SKIPIF1<0或SKIPIF1<0距離對(duì)稱軸一樣遠(yuǎn),所以當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0取得最大值,故D正確.故選:BCD.10.已知曲線SKIPIF1<0的方程為SKIPIF1<0,和直線SKIPIF1<0,則下列結(jié)論正確的是()A.曲線SKIPIF1<0表示以原點(diǎn)為圓心,以2為半徑的圓B.曲線SKIPIF1<0與直線SKIPIF1<0有1個(gè)公共點(diǎn)的充分不必要條件是SKIPIF1<0C.曲線SKIPIF1<0與直線SKIPIF1<0有2個(gè)公共點(diǎn)的充要條件是SKIPIF1<0D.當(dāng)SKIPIF1<0時(shí),曲線SKIPIF1<0上有3個(gè)點(diǎn)到直線SKIPIF1<0的距離為SKIPIF1<0【答案】BCD【解析】【分析】由題設(shè)知曲線SKIPIF1<0為SKIPIF1<0且SKIPIF1<0,即可判斷A;再畫(huà)出曲線SKIPIF1<0、直線SKIPIF1<0的圖象,應(yīng)用充分、必要性定義及數(shù)形結(jié)合分析B、C、D的正誤.【詳解】A:SKIPIF1<0,故曲線SKIPIF1<0為SKIPIF1<0且SKIPIF1<0,即曲線SKIPIF1<0表示以原點(diǎn)為圓心,以2為半徑的半圓,錯(cuò);由A分析知:曲線SKIPIF1<0與直線SKIPIF1<0如下圖示,由圖知:當(dāng)直線在與半圓左側(cè)相切和過(guò)SKIPIF1<0兩點(diǎn)(虛線表示的直線)之間時(shí),曲線SKIPIF1<0與直線SKIPIF1<0有2個(gè)公共點(diǎn),當(dāng)直線在與半圓左側(cè)相切,則SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,當(dāng)直線過(guò)SKIPIF1<0兩點(diǎn)時(shí),SKIPIF1<0,所以,曲線SKIPIF1<0與直線SKIPIF1<0有2個(gè)公共點(diǎn)時(shí)SKIPIF1<0,C對(duì);當(dāng)直線與半圓左側(cè)相切,或在過(guò)SKIPIF1<0兩點(diǎn)和過(guò)SKIPIF1<0之間的情況時(shí),曲線SKIPIF1<0與直線SKIPIF1<0有1個(gè)公共點(diǎn),當(dāng)直線過(guò)SKIPIF1<0時(shí),SKIPIF1<0,結(jié)合上述分析知:曲線SKIPIF1<0與直線SKIPIF1<0有1個(gè)公共點(diǎn)時(shí)SKIPIF1<0,,所以曲線SKIPIF1<0與直線SKIPIF1<0有1個(gè)公共點(diǎn)的充分不必要條件是SKIPIF1<0,B對(duì);當(dāng)SKIPIF1<0,則SKIPIF1<0,如上圖實(shí)線位置上的直線,顯然直線左上部分半圓有SKIPIF1<0到直線距離都為SKIPIF1<0,圓對(duì)稱性,直線右下部分半圓存在一點(diǎn)到直線距離也為SKIPIF1<0,所以SKIPIF1<0時(shí),曲線SKIPIF1<0上有3個(gè)點(diǎn)到直線SKIPIF1<0的距離為SKIPIF1<0,D對(duì).故選:BCD11.過(guò)橢圓SKIPIF1<0中心任作一直線交橢圓于P,Q兩點(diǎn),SKIPIF1<0,SKIPIF1<0是橢圓的左、右焦點(diǎn),A,B是橢圓的左、右頂點(diǎn),則下列說(shuō)法正確的是()A.SKIPIF1<0周長(zhǎng)的最小值為18B.四邊形SKIPIF1<0可能為矩形C.若直線PA斜率的取值范圍是SKIPIF1<0,則直線PB斜率的取值范圍是SKIPIF1<0D.SKIPIF1<0最小值為-1【答案】AC【解析】【分析】A由橢圓對(duì)稱性及定義有SKIPIF1<0周長(zhǎng)為SKIPIF1<0,根據(jù)橢圓性質(zhì)即可判斷;B根據(jù)圓的性質(zhì),結(jié)合橢圓方程與已知判斷正誤;C、D設(shè)SKIPIF1<0,利用斜率兩點(diǎn)式可得SKIPIF1<0,進(jìn)而判斷C正誤,應(yīng)用向量數(shù)量積的坐標(biāo)表示列關(guān)于SKIPIF1<0的表達(dá)式,結(jié)合橢圓有界性求最值.【詳解】A:根據(jù)橢圓的對(duì)稱性,SKIPIF1<0,當(dāng)PQ為橢圓的短軸時(shí),SKIPIF1<0有最小值8,所以SKIPIF1<0周長(zhǎng)的最小值為18,正確;B:若四邊形SKIPIF1<0為矩形,則點(diǎn)P,Q必在以SKIPIF1<0為直徑的圓上,但此圓與橢圓SKIPIF1<0無(wú)交點(diǎn),錯(cuò)誤;C:設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)橹本€PA斜率的范圍是SKIPIF1<0,所以直線PB斜率的范圍是SKIPIF1<0,正確;D:設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0.因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最小值為SKIPIF1<0,錯(cuò)誤.故選:AC.12.已知正方體SKIPIF1<0的棱長(zhǎng)為4,SKIPIF1<0是側(cè)面SKIPIF1<0內(nèi)任一點(diǎn),則下列結(jié)論中正確的是()A.若SKIPIF1<0到棱SKIPIF1<0的距離等于到SKIPIF1<0的距離的2倍,則SKIPIF1<0點(diǎn)的軌跡是圓的一部分B.若SKIPIF1<0到棱SKIPIF1<0的距離與到SKIPIF1<0的距離之和為6,則SKIPIF1<0點(diǎn)的軌跡的離心率為SKIPIF1<0C.若SKIPIF1<0到棱SKIPIF1<0的距離比到SKIPIF1<0的距離大2,則SKIPIF1<0點(diǎn)的軌跡的離心率為SKIPIF1<0D.若SKIPIF1<0到棱SKIPIF1<0的距離等于到SKIPIF1<0的距離,則SKIPIF1<0點(diǎn)的軌跡是線段【答案】AB【解析】【分析】由正方體的性質(zhì)可將SKIPIF1<0到棱SKIPIF1<0的距離與到SKIPIF1<0的距離轉(zhuǎn)化為在平面SKIPIF1<0內(nèi),M到點(diǎn)SKIPIF1<0的距離與到點(diǎn)B的距離,據(jù)此求出軌跡方程判斷A,根據(jù)橢圓的定義、離心率判斷B,根據(jù)雙曲線的定義、離心率判斷C,根據(jù)拋物線的定義可判斷D.【詳解】對(duì)于A,由正方體可知SKIPIF1<0到棱SKIPIF1<0的距離等于到SKIPIF1<0的距離的2倍,即在平面SKIPIF1<0內(nèi),M到點(diǎn)SKIPIF1<0的距離等于到點(diǎn)B的距離的2倍,連接SKIPIF1<0,以SKIPIF1<0中點(diǎn)為原點(diǎn),以SKIPIF1<0所在直線為x軸,以線段SKIPIF1<0的垂直平分線為y軸,建立平面直角坐標(biāo)系,如圖,設(shè)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,整理得SKIPIF1<0,SKIPIF1<0,易知點(diǎn)M的軌跡是圓的一部分,所以A正確;對(duì)于B,SKIPIF1<0到棱SKIPIF1<0的距離與到SKIPIF1<0的距離之和為6,可轉(zhuǎn)化為在平面SKIPIF1<0內(nèi),M到點(diǎn)SKIPIF1<0的距離與到點(diǎn)B的距離的和為6,大于SKIPIF1<0,所以點(diǎn)M的軌跡為橢圓的一部分,其中SKIPIF1<0,所以橢圓的離心率SKIPIF1<0,故B正確;對(duì)于C,SKIPIF1<0到棱SKIPIF1<0距離比到SKIPIF1<0的距離大2,轉(zhuǎn)化為在平面SKIPIF1<0內(nèi),SKIPIF1<0,所以點(diǎn)M的軌跡是雙曲線的一部分,該雙曲線的實(shí)軸長(zhǎng)為2,焦距為SKIPIF1<0,所以離心率SKIPIF1<0,所以C錯(cuò)誤;對(duì)于D,SKIPIF1<0到棱SKIPIF1<0的距離等于到SKIPIF1<0的距離,可轉(zhuǎn)化為在平面SKIPIF1<0內(nèi),M到點(diǎn)SKIPIF1<0的距離與到SKIPIF1<0的距離相等,所以SKIPIF1<0點(diǎn)的軌跡是以SKIPIF1<0為焦點(diǎn),SKIPIF1<0為準(zhǔn)線的拋物線的一部分,故D錯(cuò)誤.故選:AB三、填空題:本大題共4小題,每小題5分,共20分.13.已知空間向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0##SKIPIF1<0【解析】【分析】根據(jù)給定條件,利用空間向量垂直的坐標(biāo)表示求解作答.【詳解】空間向量SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<014.在正項(xiàng)等比數(shù)列SKIPIF1<0中,若SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等差中項(xiàng),則數(shù)列SKIPIF1<0的公比SKIPIF1<0______.【答案】5【解析】【分析】設(shè)正項(xiàng)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,根據(jù)等差中項(xiàng)的性質(zhì)得到SKIPIF1<0,再根據(jù)等比數(shù)列通項(xiàng)公式整理得SKIPIF1<0,解得即可.【詳解】解:設(shè)正項(xiàng)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0是SKIPIF1<0與SKIPIF1<0的等差中項(xiàng),所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去);故答案為:SKIPIF1<0.15.已知雙曲線SKIPIF1<0的左、右焦點(diǎn)分別是SKIPIF1<0,SKIPIF1<0,左、右頂點(diǎn)分別是SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0是第一象限內(nèi)一點(diǎn),若SKIPIF1<0,且SKIPIF1<0,線段SKIPIF1<0與雙曲線交于SKIPIF1<0,若SKIPIF1<0,則雙曲線的漸近線方程為_(kāi)_____.【答案】SKIPIF1<0【解析】【分析】若SKIPIF1<0為SKIPIF1<0中點(diǎn),易知SKIPIF1<0,則△SKIPIF1<0為等腰三角形,SKIPIF1<0,根據(jù)已知可得SKIPIF1<0、SKIPIF1<0,結(jié)合雙曲線定義得SKIPIF1<0,進(jìn)而可得SKIPIF1<0,三角形SKIPIF1<0中用余弦定理求SKIPIF1<0,建立齊次方程求參數(shù)關(guān)系,即可得漸近線方程.【詳解】若SKIPIF1<0為SKIPIF1<0中點(diǎn),則SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故△SKIPIF1<0為等腰三角形,SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故雙曲線的漸近線方程為SKIPIF1<0.故答案為:SKIPIF1<016.如圖,圓錐SKIPIF1<0的軸截面SKIPIF1<0是邊長(zhǎng)為4的等邊三角形,過(guò)SKIPIF1<0中點(diǎn)SKIPIF1<0作弦SKIPIF1<0,過(guò)SKIPIF1<0作平面SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,已知此平面與圓錐側(cè)面的交線是以SKIPIF1<0為頂點(diǎn)的拋物線的一部分,則SKIPIF1<0______.【答案】SKIPIF1<0【解析】【分析】先根據(jù)線面平行的性質(zhì)定理得到SA與MN平行,從而SKIPIF1<0∽SKIPIF1<0,可得SKIPIF1<0,再利用向量的線性運(yùn)算及數(shù)量積的運(yùn)算律即可求解.【詳解】如圖,連接CO,根據(jù)題意知SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,
所以SKIPIF1<0,因?yàn)镾KIPIF1<0平面CDM,且SKIPIF1<0平面SAB,平面SABSKIPIF1<0平面CDM=MN,所以SKIPIF1<0,所以SKIPIF1<0∽SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,因?yàn)镹為SKIPIF1<0中點(diǎn),所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0四、解答題:本大題共6小題,共70分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.17.已知正項(xiàng)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,在①SKIPIF1<0,且SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0,SKIPIF1<0,這三個(gè)條件中任選一個(gè),解答下列問(wèn)題:(1)證明數(shù)列SKIPIF1<0是等比數(shù)列,并求其通項(xiàng)公式;(2)設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0恒成立,求SKIPIF1<0的最小值.注:若選擇不同的條件分別解答,則按第一個(gè)解答計(jì)分.【答案】(1)證明見(jiàn)解析,SKIPIF1<0;(2)SKIPIF1<0【解析】【分析】(1)由SKIPIF1<0與SKIPIF1<0的關(guān)系或等比數(shù)列的定義及通項(xiàng)公式求解即可;(2)由裂項(xiàng)相消法求出SKIPIF1<0后,再由SKIPIF1<0恒成立進(jìn)行求解即可.小問(wèn)1詳解】若選擇條件①:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為3,公比為3的等比數(shù)列,所以SKIPIF1<0;若選擇條件②:因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,兩式相減,得SKIPIF1<0,即SKIPIF1<0(SKIPIF1<0),又SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為3,公比為3的等比數(shù)列,所以SKIPIF1<0;若選擇條件③:由SKIPIF1<0SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為3,公比為3的等比數(shù)列,所以SKIPIF1<0;【小問(wèn)2詳解】由(1)知,SKIPIF1<0,SKIPIF1<0也符合該式,則SKIPIF1<0SKIPIF1<0,因?yàn)閿?shù)列SKIPIF1<0為遞增數(shù)列,所以SKIPIF1<0的最小值為SKIPIF1<0,又SKIPIF1<0恒成立,則SKIPIF1<0,解得SKIPIF1<0,故整數(shù)SKIPIF1<0的最小值為SKIPIF1<0.18.如圖,在幾何體SKIPIF1<0中,四邊形SKIPIF1<0是等腰梯形,四邊形SKIPIF1<0是正方形,且平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn).(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)求二面角SKIPIF1<0的余弦值.【答案】(1)證明見(jiàn)解析;(2)SKIPIF1<0.【解析】【分析】(1)利用線面平行的判定定理和面面平行的判定定理和性質(zhì)定理推理作答.(2)建立空間直角坐標(biāo)系,利用空間向量的夾角公式求解作答.【小問(wèn)1詳解】取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0中點(diǎn),則SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,于是SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,同理SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,因此平面SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.【小問(wèn)2詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0,正方形SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,于是SKIPIF1<0平面SKIPIF1<0,以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn),分別以SKIPIF1<0的方向?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0軸正方向,建立空間直角坐標(biāo)系SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,因此SKIPIF1<0,顯然二面角SKIPIF1<0的平面角為銳角,所以二面角SKIPIF1<0的余弦值為SKIPIF1<0.19.在平面直角坐標(biāo)系SKIPIF1<0中,已知圓SKIPIF1<0.設(shè)圓SKIPIF1<0與SKIPIF1<0軸相切,與圓SKIPIF1<0外切,且圓心SKIPIF1<0在直線SKIPIF1<0上.(1)求圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)設(shè)垂直于SKIPIF1<0的直線SKIPIF1<0與圓SKIPIF1<0相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),且SKIPIF1<0,求直線SKIPIF1<0的方程.【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0.【解析】【分析】(1)由題意求出圓SKIPIF1<0,圓SKIPIF1<0的圓心和半徑,由兩圓外切,可得SKIPIF1<0,即可求出答案.(2)由SKIPIF1<0,可求出圓心O1到直線l的距離,再由點(diǎn)到直線的距離公式代入求解即可.【小問(wèn)1詳解】圓SKIPIF1<0:SKIPIF1<0,則圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0,即圓SKIPIF1<0的圓心坐標(biāo)為SKIPIF1<0,半徑為SKIPIF1<0,因?yàn)閳ASKIPIF1<0與x軸相切,與圓O1外切,則圓心SKIPIF1<0SKIPIF1<0,SKIPIF1<0,則圓SKIPIF1<0的半徑為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,即圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0;【小問(wèn)2詳解】由(1)知O2(﹣6,1),則SKIPIF1<0,所以直線l的斜率為SKIPIF1<0,設(shè)直線l的方程為SKIPIF1<0,因?yàn)镾KIPIF1<0,則圓心O1到直線l的距離SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以直線l的方程為SKIPIF1<0或SKIPIF1<0.20.已知雙曲線SKIPIF1<0的離心率為2,焦點(diǎn)到一條漸近線的距離為SKIPIF1<0.(1)求雙曲線SKIPIF1<0的方程;(2)若過(guò)雙曲線的左焦點(diǎn)SKIPIF1<0的直線SKIPIF1<0交雙曲線于SKIPIF1<0,SKIPIF1<0兩點(diǎn),交SKIPIF1<0軸于SKIPIF1<0,設(shè)SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見(jiàn)詳解【解析】【分析】(1)由雙曲線的離心率,焦點(diǎn)到一條漸近線的距離建立等量關(guān)系,求解即可;(2)設(shè)出直線的方程,聯(lián)立方程組,得到韋達(dá)定理,由SKIPIF1<0,解得SKIPIF1<0,證明即可.【小問(wèn)1詳解】因?yàn)橐阎p曲線SKIPIF1<0的離心率為2,所以SKIPIF1<0,又因?yàn)榻裹c(diǎn)到一條漸近線的距離為SKIPIF1<0,設(shè)焦點(diǎn)坐標(biāo)為SKIPIF1<0,到漸近線SKIPIF1<0的距離為:SKIPIF1<0.所以SKIPIF1<0,又SKIPIF1<0,解得:SKIPIF1<0.所以雙曲線SKIPIF1<0的方程為:SKIPIF1<0.【小問(wèn)2詳解】證明:如圖由題意可知SKIPIF1<0,由于過(guò)雙曲線的左焦點(diǎn)SKIPIF1<0的直線SKIPIF1<0交雙曲線于SKIPIF1<0,SKIPIF1<0兩點(diǎn),交SKIPIF1<0軸于SKIPIF1<0,所以可知直線SKIPIF1<0的斜率存在,故設(shè)直線方程為:SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.聯(lián)立SKIPIF1<0得:SKIPIF1<0.SKIPIF1<0恒成立.所以SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.21.已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,過(guò)焦點(diǎn)垂直于SKIPIF1<0的直線與拋物線交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),SKIPIF1<0.(1)求SKIPIF1<0的方程;(2)點(diǎn)SKIPIF1<0是準(zhǔn)線SKIPIF1<0上任一點(diǎn),過(guò)SKIPIF1<0作拋物線的兩條切線SKIPIF1<0,SKIPIF1<0,切點(diǎn)分別為SKI
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源項(xiàng)目投資合同履行的環(huán)保擔(dān)保協(xié)議3篇
- 電氣維保知識(shí)培訓(xùn)課件
- 船舶安全知識(shí)培訓(xùn)課件
- “520”荔枝電商法治講堂2025年度電商合規(guī)指南3篇
- 《疾病與營(yíng)養(yǎng)的關(guān)系》課件
- 2024年防水工程竣工驗(yàn)收合同
- 《白銀投資》課件
- 浙江農(nóng)林大學(xué)《現(xiàn)代農(nóng)業(yè)建筑設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中南林業(yè)科技大學(xué)涉外學(xué)院《兒童畫(huà)創(chuàng)作理論與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度公益組織與企業(yè)聯(lián)合慈善捐贈(zèng)合作框架協(xié)議范本3篇
- 新GCP醫(yī)療器械臨床試驗(yàn)知識(shí)試題(附含答案)
- 2024年浙江首考高考選考生物試卷試題真題(含答案詳解)
- 春節(jié)期間安全告知書(shū)
- 天津市紅橋區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期期末地理試題
- 西門(mén)子數(shù)字化工廠-數(shù)字化車(chē)間-先進(jìn)制造技術(shù)
- 飯店新店后廚培訓(xùn)方案
- 青少年禮儀培訓(xùn)課件
- 2024醫(yī)院消防安全培訓(xùn)
- 景區(qū)銷售可行性報(bào)告
- 公路自然災(zāi)害的防治-路基水毀的類型與防治對(duì)策
- 高二年級(jí)體育課教案高二年級(jí)體育課教案全集
評(píng)論
0/150
提交評(píng)論