版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第3節(jié)圓的方程考試要求掌握確定圓的幾何要素,掌握?qǐng)A的標(biāo)準(zhǔn)方程與一般方程.1.圓的定義和圓的方程知
識(shí)
梳
理定義平面內(nèi)到______的距離等于______的點(diǎn)的軌跡叫做圓方程標(biāo)準(zhǔn)(x-a)2+(y-b)2=r2(r>0)圓心C(a,b)半徑為r一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)充要條件:_______________圓心坐標(biāo):________定點(diǎn)定長(zhǎng)D2+E2-4F>02.點(diǎn)與圓的位置關(guān)系平面上的一點(diǎn)M(x0,y0)與圓C:(x-a)2+(y-b)2=r2之間存在著下列關(guān)系:(1)|MC|>r?M在_____,即(x0-a)2+(y0-b)2>r2?M在圓外;(2)|MC|=r?M在_____,即(x0-a)2+(y0-b)2=r2?M在圓上;(3)|MC|<r?M在_____,即(x0-a)2+(y0-b)2<r2?M在圓內(nèi).圓外圓上圓內(nèi)[常用結(jié)論與微點(diǎn)提醒]1.圓心在坐標(biāo)原點(diǎn)半徑為r的圓的方程為x2+y2=r2.2.以A(x1,y1),B(x2,y2)為直徑端點(diǎn)的圓的方程為(x-x1)·(x-x2)+(y-y1)(y-y2)=0.診
斷
自
測(cè)1.判斷下列結(jié)論正誤(在括號(hào)內(nèi)打“√”或“×”)(1)確定圓的幾何要素是圓心與半徑.(
)(2)方程x2+y2=a2表示半徑為a的圓.(
)(3)方程x2+y2+4mx-2y+5m=0表示圓.(
)(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圓的充要條件是A=C≠0,B=0,D2+E2-4AF>0.(
)答案(1)√
(2)×
(3)×
(4)√解析(2)當(dāng)a=0時(shí),x2+y2=a2表示點(diǎn)(0,0);當(dāng)a<0時(shí),表示半徑為|a|的圓.答案D3.(老教材必修2P120例3改編)過點(diǎn)A(1,-1),B(-1,1),且圓心在直線x+y-2=0上的圓的方程是(
) A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4
解析設(shè)圓心C的坐標(biāo)為(a,b),半徑為r.因?yàn)閳A心C在直線x+y-2=0上,所以b=2-a.又|CA|2=|CB|2,所以(a-1)2+(2-a+1)2=(a+1)2+(2-a-1)2,所以a=1,b=1.所以r=2.所以方程為(x-1)2+(y-1)2=4.
答案C4.(2019·合肥模擬)已知A(1,0),B(0,3)兩點(diǎn),則以AB為直徑的圓的方程是(
) A.x2+y2-x-3y=0 B.x2+y2+x+3y=0 C.x2+y2+x-3y=0 D.x2+y2-x+3y=0答案A答案CD答案D考點(diǎn)一圓的方程【例1】(1)(一題多解)已知圓E經(jīng)過三點(diǎn)A(0,1),B(2,0),C(0,-1),且圓心在x軸的正半軸上,則圓E的標(biāo)準(zhǔn)方程為(
)(2)(2020·濰坊調(diào)研)在平面直角坐標(biāo)系xOy中,以點(diǎn)(0,1)為圓心且與直線x-by+2b+1=0相切的所有圓中,半徑最大的圓的標(biāo)準(zhǔn)方程為(
)A.x2+(y-1)2=4 B.x2+(y-1)2=2C.x2+(y-1)2=8 D.x2+(y-1)2=16解析(1)法一(待定系數(shù)法)設(shè)圓E的一般方程為x2+y2+Dx+Ey+F=0(D2+E2-4F>0),又圓E的圓心在x軸的正半軸上,法二(幾何法)答案(1)C
(2)B規(guī)律方法求圓的方程時(shí),應(yīng)根據(jù)條件選用合適的圓的方程.一般來說,求圓的方程有兩種方法:(1)幾何法,通過研究圓的性質(zhì)進(jìn)而求出圓的基本量.確定圓的方程時(shí),常用到的圓的三個(gè)性質(zhì):①圓心在過切點(diǎn)且垂直切線的直線上;②圓心在任一弦的中垂線上;③兩圓內(nèi)切或外切時(shí),切點(diǎn)與兩圓圓心三點(diǎn)共線;(2)代數(shù)法,即設(shè)出圓的方程,用待定系數(shù)法求解.又令y=0,得x2+Dx+F=0.③設(shè)x1,x2是方程③的兩根,由|x1-x2|=6,得D2-4F=36,④聯(lián)立①②④,解得D=-2,E=-4,F(xiàn)=-8,或D=-6,E=-8,F(xiàn)=0.故所求圓的方程為x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.答案(1)x2+(y+1)2=4(2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0(2)設(shè)圓的方程為x2+y2+Dx+Ey+F=0(D2+E2-4F>0),角度1利用幾何意義求最值【例2-1】
已知點(diǎn)(x,y)在圓(x-2)2+(y+3)2=1上.考點(diǎn)二與圓有關(guān)的最值問題多維探究(2)設(shè)t=x+y,則y=-x+t,t可視為直線y=-x+t在y軸上的截距,∴x+y的最大值和最小值就是直線與圓有公共點(diǎn)時(shí)直線縱截距的最大值和最小值,即直線與圓相切時(shí)在y軸上的截距.由直線與圓相切得圓心到直線的距離等于半徑,角度2利用對(duì)稱性求最值【例2-2】
已知圓C1:(x-2)2+(y-3)2=1,圓C2:(x-3)2+(y-4)2=9,M,N分別是圓C1,C2上的動(dòng)點(diǎn),P為x軸上的動(dòng)點(diǎn),則|PM|+|PN|的最小值為(
)答案A規(guī)律方法求解形如|PM|+|PN|(其中M,N均為動(dòng)點(diǎn))且與圓C有關(guān)的折線段的最值問題的基本思路:(1)“動(dòng)化定”,把與圓上動(dòng)點(diǎn)的距離轉(zhuǎn)化為與圓心的距離;(2)“曲化直”,即將折線段之和轉(zhuǎn)化為同一直線上的兩線段之和,一般要通過對(duì)稱性解決.角度3建立函數(shù)關(guān)系求最值答案12規(guī)律方法根據(jù)題中條件列出相關(guān)的函數(shù)關(guān)系式,再根據(jù)函數(shù)知識(shí)或基本不等式求最值.解析(1)x2+y2表示圓(x-2)2+y2=3上的一點(diǎn)與原點(diǎn)距離的平方,由平面幾何知識(shí)知,在原點(diǎn)和圓心連線與圓的兩個(gè)交點(diǎn)處取得最大值和最小值(如圖).連接A′C交圓C于Q,由對(duì)稱性可知考點(diǎn)三與圓有關(guān)的軌跡問題【例3】
已知Rt△ABC的斜邊為AB,且A(-1,0),B(3,0),求: (1)(一題多解)直角頂點(diǎn)C的軌跡方程; (2)直角邊BC的中點(diǎn)M的軌跡方程.
解(1)法一設(shè)C(x,y),因?yàn)锳,B,C三點(diǎn)不共線,所以y≠0.
因?yàn)锳C⊥BC,且BC,AC斜率均存在,所以kAC·kBC=-1,化簡(jiǎn)得x2+y2-2x-3=0.因此,直角頂點(diǎn)C的軌跡方程為x2+y2-2x-3=0(y≠0).所以x0=2x-3,y0=2y.所以直角頂點(diǎn)C的軌跡方程為(x-1)2+y2=4(y≠0).由(1)知,點(diǎn)C的軌跡方程為(x-1)2+y2=4(y≠0),將x0=2x-3,y0=2y代入得(2x-4)2+(2y)2=4,即(x-2)2+y2=1.因此動(dòng)點(diǎn)M的軌跡方程為(x-2)2+y2=1(y≠0).規(guī)律方法求與圓有關(guān)的軌跡問題時(shí),根據(jù)題設(shè)條件的不同常采用以下方法:(1)直接法,直接根據(jù)題目提供的條件列出方程;(2)定義法,根據(jù)圓、直線等定義列方程;(3)幾何法,利用圓的幾何性質(zhì)列方程;(4)代入法,找到要求點(diǎn)與已知點(diǎn)的關(guān)系,代入已知點(diǎn)滿足的關(guān)系式等.【訓(xùn)練3】
已知過原點(diǎn)的動(dòng)直線l與圓C1:x2+y2-6x+5=0相交于不同的兩點(diǎn)A,B. (1)求圓C1的圓心坐標(biāo); (2)求線段AB的中點(diǎn)M的軌跡C的方程.
解(1)由x2+y2-6x+5=0得(x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度許可合同:品牌使用與市場(chǎng)拓展
- 2025年度私人車輛抵押貸款保險(xiǎn)續(xù)保合同3篇
- 2025不銹鋼戶外設(shè)施安裝及維護(hù)管理服務(wù)合同3篇
- 二零二五年度礦山生態(tài)修復(fù)承包服務(wù)合同范本2篇
- 室內(nèi)養(yǎng)花與生態(tài)環(huán)境的維護(hù)
- 家用醫(yī)療設(shè)備的維護(hù)與保養(yǎng)技巧
- 2025年度物流園區(qū)項(xiàng)目合作合同3篇
- 2024版苗木購買合同
- 心理健康教育與學(xué)生生涯規(guī)劃的融合
- 二零二五年度汽車維修擔(dān)保協(xié)議6篇
- (完整版)鋼筋加工棚驗(yàn)算
- 安徽省合肥市廬陽區(qū)2023-2024學(xué)年三年級(jí)上學(xué)期期末數(shù)學(xué)試卷
- 概念方案模板
- 西南交大畢業(yè)設(shè)計(jì)-地鐵車站主體結(jié)構(gòu)設(shè)計(jì)
- 2024年山東傳媒職業(yè)學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 江蘇省南通市崇川區(qū)2023-2024學(xué)年三年級(jí)上學(xué)期期末語文試卷
- 華電行測(cè)題庫及答案2024
- crtd植入術(shù)護(hù)理查房
- 掃雪鏟冰安全教育培訓(xùn)
- 人教版三年級(jí)下冊(cè)必讀書目《中國(guó)古代寓言故事》
- 涉密內(nèi)網(wǎng)分級(jí)保護(hù)設(shè)計(jì)方案
評(píng)論
0/150
提交評(píng)論