2024屆河北省中原名校聯(lián)盟數(shù)學(xué)高一下期末綜合測(cè)試試題含解析_第1頁(yè)
2024屆河北省中原名校聯(lián)盟數(shù)學(xué)高一下期末綜合測(cè)試試題含解析_第2頁(yè)
2024屆河北省中原名校聯(lián)盟數(shù)學(xué)高一下期末綜合測(cè)試試題含解析_第3頁(yè)
2024屆河北省中原名校聯(lián)盟數(shù)學(xué)高一下期末綜合測(cè)試試題含解析_第4頁(yè)
2024屆河北省中原名校聯(lián)盟數(shù)學(xué)高一下期末綜合測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆河北省中原名校聯(lián)盟數(shù)學(xué)高一下期末綜合測(cè)試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知函數(shù)是奇函數(shù),若,則的取值范圍是()A. B. C. D.2.若,則下列不等式正確的是()A. B. C. D.3.已知球的直徑SC=4,A,B是該球球面上的兩點(diǎn),AB=1.∠ASC=∠BSC=45°則棱錐S—ABC的體積為()A. B. C. D.4.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為()A.10 B.20 C.30 D.605.若平面和直線,滿足,,則與的位置關(guān)系一定是()A.相交 B.平行 C.異面 D.相交或異面6.已知點(diǎn)、、在圓上運(yùn)動(dòng),且,若點(diǎn)的坐標(biāo)為,的最大值為()A. B. C. D.7.在等差數(shù)列an中,若a3+A.6 B.7 C.8 D.98.如圖,為正三角形,,,則多面體的正視圖(也稱主視圖)是A. B. C. D.9.設(shè),,若是與的等比中項(xiàng),則的最小值為()A. B. C.3 D.10.為了得到函數(shù)的圖像,只需把函數(shù)的圖像()A.向右平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的3倍;B.向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的3倍;C.向右平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的橫坐標(biāo)縮短到原來的倍;D.向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的橫坐標(biāo)縮短到原來的倍二、填空題:本大題共6小題,每小題5分,共30分。11.若在等比數(shù)列中,,則__________.12.設(shè)是等差數(shù)列的前項(xiàng)和,若,,則公差(___).13.已知,,與的夾角為鈍角,則的取值范圍是_____;14.函數(shù)的圖象在點(diǎn)處的切線方程是,則__________.15.函數(shù)的值域是______.16.已知函數(shù)的部分圖象如圖所示,則_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè).(1)用表示的最大值;(2)當(dāng)時(shí),求的值.18.某校全體教師年齡的頻率分布表如表1所示,其中男教師年齡的頻率分布直方圖如圖2所示.已知該校年齡在歲以下的教師中,男女教師的人數(shù)相等.表1:(1)求圖2中的值;(2)若按性別分層抽樣,隨機(jī)抽取16人參加技能比賽活動(dòng),求男女教師抽取的人數(shù);(3)若從年齡在的教師中隨機(jī)抽取2人,參加重陽(yáng)節(jié)活動(dòng),求至少有1名女教師的概率.19.已知等差數(shù)列滿足,,其前項(xiàng)和為.(1)求的通項(xiàng)公式及;(2)令,求數(shù)列的前項(xiàng)和,并求的值.20.在“新零售”模式的背景下,某大型零售公司推廣線下分店,計(jì)劃在S市的A區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個(gè)數(shù),該公司對(duì)該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個(gè)數(shù),y表示這個(gè)x個(gè)分店的年收入之和.(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程(2)假設(shè)該公司在A區(qū)獲得的總年利潤(rùn)z(單位:百萬元)與x,y之間的關(guān)系為,請(qǐng)結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個(gè)分店時(shí),才能使A區(qū)平均每個(gè)分店的年利潤(rùn)最大?(參考公式:,其中,)21.給定常數(shù),定義函數(shù),數(shù)列滿足.(1)若,求及;(2)求證:對(duì)任意,;(3)是否存在,使得成等差數(shù)列?若存在,求出所有這樣的,若不存在,說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】

由題意首先求得m的值,然后結(jié)合函數(shù)的性質(zhì)求解不等式即可.【題目詳解】函數(shù)為奇函數(shù),則恒成立,即恒成立,整理可得:,據(jù)此可得:,即恒成立,據(jù)此可得:.函數(shù)的解析式為:,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故奇函數(shù)是定義域內(nèi)的單調(diào)遞增函數(shù),不等式即,據(jù)此有:,由函數(shù)的單調(diào)性可得:,求解不等式可得的取值范圍是.本題選擇C選項(xiàng).【題目點(diǎn)撥】對(duì)于求值或范圍的問題,一般先利用函數(shù)的奇偶性得出區(qū)間上的單調(diào)性,再利用其單調(diào)性脫去函數(shù)的符號(hào)“f”,轉(zhuǎn)化為解不等式(組)的問題,若f(x)為偶函數(shù),則f(-x)=f(x)=f(|x|).2、C【解題分析】

根據(jù)不等式性質(zhì),結(jié)合特殊值即可比較大小.【題目詳解】對(duì)于A,當(dāng),滿足,但不滿足,所以A錯(cuò)誤;對(duì)于B,當(dāng)時(shí),不滿足,所以B錯(cuò)誤;對(duì)于C,由不等式性質(zhì)“不等式兩邊同時(shí)加上或減去同一個(gè)數(shù)或式子,不等式符號(hào)不變”,所以由可得,因而C正確;對(duì)于D,當(dāng)時(shí),不滿足,所以D錯(cuò)誤.綜上可知,C為正確選項(xiàng),故選:C.【題目點(diǎn)撥】本題考查了不等式大小比較,不等式性質(zhì)及特殊值的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.3、C【解題分析】如圖所示,由題意知,在棱錐SABC中,△SAC,△SBC都是等腰直角三角形,其中AB=1,SC=4,SA=AC=SB=BC=1.取SC的中點(diǎn)D,易證SC垂直于面ABD,因此棱錐SABC的體積為兩個(gè)棱錐SABD和CABD的體積和,所以棱錐SABC的體積V=SC·S△ADB=×4×=.4、B【解題分析】

由三視圖可知幾何體為四棱錐,利用四棱錐體積公式可求得結(jié)果.【題目詳解】由三視圖可知,該幾何體為底面為長(zhǎng)為,寬為的長(zhǎng)方形,高為的四棱錐四棱錐體積本題正確選項(xiàng):【題目點(diǎn)撥】本題考查根據(jù)三視圖求解幾何體體積的問題,關(guān)鍵是能夠通過三視圖將幾何體還原為四棱錐,從而利用棱錐體積公式來進(jìn)行求解.5、D【解題分析】

當(dāng)時(shí)與相交,當(dāng)時(shí)與異面.【題目詳解】當(dāng)時(shí)與相交,當(dāng)時(shí)與異面.故答案為D【題目點(diǎn)撥】本題考查了直線的位置關(guān)系,屬于基礎(chǔ)題型.6、C【解題分析】

由題意可知為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標(biāo)原點(diǎn)),然后利用平面向量模的三角不等式以及圓的幾何性質(zhì)可得出的最大值.【題目詳解】如下圖所示:,為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標(biāo)原點(diǎn)),由平面向量模的三角不等式可得,當(dāng)且僅當(dāng)點(diǎn)的坐標(biāo)為時(shí),等號(hào)成立,因此,的最大值為.故選:C.【題目點(diǎn)撥】本題考查向量模的最值問題,涉及平面向量模的三角不等式以及圓的幾何性質(zhì)的應(yīng)用,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.7、C【解題分析】

通過等差數(shù)列的性質(zhì)可得答案.【題目詳解】因?yàn)閍3+a9=17【題目點(diǎn)撥】本題主要考查等差數(shù)列的性質(zhì),難度不大.8、D【解題分析】

為三角形,,平面,

且,則多面體的正視圖中,

必為虛線,排除B,C,

說明右側(cè)高于左側(cè),排除A.,故選D.9、C【解題分析】

先由題意求出,再結(jié)合基本不等式,即可求出結(jié)果.【題目詳解】因?yàn)槭桥c的等比中項(xiàng),所以,故,因?yàn)?,,所以,?dāng)且僅當(dāng),即時(shí),取等號(hào);故選C【題目點(diǎn)撥】本題主要考查基本不等式的應(yīng)用,熟記基本不等式即可,屬于常考題型.10、B【解題分析】

根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.【題目詳解】把函數(shù)y=2sinx,x∈R的圖象上所有的點(diǎn)向左平移個(gè)單位長(zhǎng)度,可得函數(shù)y=2sin(x)的圖象,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的3倍(縱坐標(biāo)不變),可得函數(shù)y=2sin(),x∈R的圖象,故選:B.【題目點(diǎn)撥】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

根據(jù)等比中項(xiàng)的性質(zhì),將等式化成即可求得答案.【題目詳解】是等比數(shù)列,若,則.因?yàn)?,所以,.故答案為?.【題目點(diǎn)撥】本題考查等比中項(xiàng)的性質(zhì),考查基本運(yùn)算求解能力,屬于容易題.12、【解題分析】

根據(jù)兩個(gè)和的關(guān)系得到公差條件,解得結(jié)果.【題目詳解】由題意可知,,即,又,兩式相減得,.【題目點(diǎn)撥】本題考查等差數(shù)列和項(xiàng)的性質(zhì),考查基本分析求解能力,屬基礎(chǔ)題.13、【解題分析】

與的夾角為鈍角,即數(shù)量積小于0.【題目詳解】因?yàn)榕c的夾角為鈍角,所以與的數(shù)量積小于0且不平行.且所以【題目點(diǎn)撥】本題考查兩向量的夾角為鈍角的坐標(biāo)表示,一定注意數(shù)量積小于0包括平角.14、【解題分析】由導(dǎo)數(shù)的幾何意義可知,又,所以.15、【解題分析】

將函數(shù)化為的形式,再計(jì)算值域?!绢}目詳解】因?yàn)樗浴绢}目點(diǎn)撥】本題考查三角函數(shù)的值域,屬于基礎(chǔ)題。16、【解題分析】

由圖可得,即可求得:,再由圖可得:當(dāng)時(shí),取得最大值,即可列方程,整理得:,解得:(),結(jié)合即可得解.【題目詳解】由圖可得:,所以,解得:由圖可得:當(dāng)時(shí),取得最大值,即:整理得:,所以()又,所以【題目點(diǎn)撥】本題主要考查了三角函數(shù)圖象的性質(zhì)及觀察能力,還考查了轉(zhuǎn)化思想及計(jì)算能力,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解題分析】

(1)化f(x)為sinx的二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),對(duì)a討論求出函數(shù)最大值;(2)由M(a)=2求出對(duì)應(yīng)的a值即可.【題目詳解】(1),∵,∴.①當(dāng),即時(shí),;②當(dāng),即時(shí),;③當(dāng),即時(shí),.∴(2)當(dāng)時(shí),(舍)或-2(舍);當(dāng)時(shí),;當(dāng)時(shí),.綜上或.【題目點(diǎn)撥】本題主要考查了三角函數(shù)恒等變換的應(yīng)用和二次函數(shù)的性質(zhì)問題,考查了分段函數(shù)求值問題,是中檔題.18、(1);(2)見解析;(3)【解題分析】

由男教師年齡的頻率分布直方圖總面積為1求得答案;由男教師年齡在的頻率可計(jì)算出男教師人數(shù),從而女教師人數(shù)也可求得,于是通過分層抽樣的比例關(guān)系即可得到答案;年齡在的教師中,男教師為(人),則女教師為1人,從而可計(jì)算出基本事件的概率.【題目詳解】(1)由男教師年齡的頻率分布直方圖得解得(2)該校年齡在歲以下的男女教師人數(shù)相等,且共14人,年齡在歲以下的男教師共7人由(1)知,男教師年齡在的頻率為男教師共有(人),女教師共有(人)按性別分層抽樣,隨機(jī)抽取16人參加技能比賽活動(dòng),則男教師抽取的人數(shù)為(人),女教師抽取的人數(shù)為人(3)年齡在的教師中,男教師為(人),則女教師為1人從年齡在的教師中隨機(jī)抽取2人,共有10種可能情形其中至少有1名女教師的有4種情形故所求概率為【題目點(diǎn)撥】本題主要考查頻率分布直方圖,分層抽樣,古典概率的計(jì)算,意在考查學(xué)生的計(jì)算能力和分析能力,難度不大.19、(1),;(2),【解題分析】

(1)利用等差數(shù)列的通項(xiàng)公式及前n項(xiàng)的和公式可得答案;(2)利用“裂項(xiàng)求和”法可得答案.【題目詳解】解:(1)設(shè)等差數(shù)列的公差為,由,得,又,解得.所以.所以.(2)由,得.設(shè)的前項(xiàng)和為,則.【題目點(diǎn)撥】本題主要考查等差數(shù)列的通項(xiàng)公式及前n項(xiàng)的和,及數(shù)列求和的“裂項(xiàng)相消法”,屬于中檔題.20、(1);(2)該公司應(yīng)開設(shè)4個(gè)分店時(shí),在該區(qū)的每個(gè)分店的平均利潤(rùn)最大【解題分析】

(1)由表中數(shù)據(jù)先求得.再結(jié)合公式分別求得,即可得y關(guān)于x的線性回歸方程.(2)將(1)中所得結(jié)果代入中,進(jìn)而表示出每個(gè)分店的平均利潤(rùn),結(jié)合基本不等式即可求得最值及取最值時(shí)自變量的值.【題目詳解】(1)由表中數(shù)據(jù)和參考數(shù)據(jù)得:,,因而可得,,再代入公式計(jì)算可知,∴,∴.(2)由題意,可知總收入的預(yù)報(bào)值與x之間的關(guān)系為:,設(shè)該區(qū)每個(gè)分店的平均利潤(rùn)為t,則,故t的預(yù)報(bào)值與x之間的關(guān)系為,當(dāng)且僅當(dāng)時(shí)取等號(hào),即或(舍)則當(dāng)時(shí),取到最大值,故該公司應(yīng)開設(shè)4個(gè)分店時(shí),在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論