2024屆上海市華二附中數(shù)學(xué)高一下期末達標(biāo)檢測模擬試題含解析_第1頁
2024屆上海市華二附中數(shù)學(xué)高一下期末達標(biāo)檢測模擬試題含解析_第2頁
2024屆上海市華二附中數(shù)學(xué)高一下期末達標(biāo)檢測模擬試題含解析_第3頁
2024屆上海市華二附中數(shù)學(xué)高一下期末達標(biāo)檢測模擬試題含解析_第4頁
2024屆上海市華二附中數(shù)學(xué)高一下期末達標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆上海市華二附中數(shù)學(xué)高一下期末達標(biāo)檢測模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若不等式對實數(shù)恒成立,則實數(shù)的取值范圍()A.或 B.C. D.2.一位媽媽記錄了孩子6至9歲的身高(單位:cm),所得數(shù)據(jù)如下表:年齡(歲)6789身高(cm)118126136144由散點圖可知,身高與年齡之間的線性回歸方程為,預(yù)測該孩子10歲時的身高為A.154 B.153 C.152 D.1513.若關(guān)于x的一元二次不等式ax2+2ax+1>0A.(-∞,0)∪(1,+∞) B.(0,1) C.(-∞,0]∪(1,+∞)4.若是一個圓的方程,則實數(shù)的取值范圍是()A. B.C. D.5.下列賦值語句正確的是()A.S=S+i2 B.A=-AC.x=2x+1 D.P=6.從A,B,C三個同學(xué)中選2名代表,則A被選中的概率為()A. B. C. D.7.等差數(shù)列中,已知,則()A.1 B.2 C.3 D.48.已知是兩條異面直線,,那么與的位置關(guān)系()A.一定是異面 B.一定是相交 C.不可能平行 D.不可能垂直9.直線xy+1=0的傾斜角是()A.30° B.60°C.120° D.150°10.已知三棱錐的所有頂點都在球的求面上,是邊長為的正三角形,為球的直徑,且,則此棱錐的體積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在等比數(shù)列中,已知,則=________________.12.程序:的最后輸出值為___________________.13.某產(chǎn)品分為優(yōu)質(zhì)品、合格品、次品三個等級,生產(chǎn)中出現(xiàn)合格品的概率為0.25,出現(xiàn)次品的概率為0.03,在該產(chǎn)品中任抽一件,則抽到優(yōu)質(zhì)品的概率為__________.14.已知,若直線與直線垂直,則的最小值為_____15.已知一圓臺的底面圓的半徑分別為2和5,母線長為5,則圓臺的高為_______.16.在等差數(shù)列中,,,則.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知直線與平行.(1)求實數(shù)的值:(2)設(shè)直線過點,它被直線,所截的線段的中點在直線上,求的方程.18.已知△ABC中,A(1,﹣4),B(6,6),C(﹣2,0).求(1)過點A且平行于BC邊的直線的方程;(2)BC邊的中線所在直線的方程.19.已知公差不為零的等差數(shù)列的前項和為,,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,數(shù)列的前項和為,求.20.如圖,在中,,為內(nèi)一點,.(1)若,求;(2)若,求的面積.21.某研究機構(gòu)對高三學(xué)生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù).x681012y2356(1)請根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;(2)判斷該高三學(xué)生的記憶力x和判斷力是正相關(guān)還是負(fù)相關(guān);并預(yù)測判斷力為4的同學(xué)的記憶力.(參考公式:)

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

對m分m≠0和m=0兩種情況討論分析得解.【題目詳解】由題得時,x<0,與已知不符,所以m≠0.當(dāng)m≠0時,,所以.綜合得m的取值范圍為.故選C【題目點撥】本題主要考查一元二次不等式的恒成立問題,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.2、B【解題分析】試題分析:根據(jù)題意,由表格可知,身高y與年齡x之間的線性回歸直線方程為,那么可知回歸方程必定過樣本中心點,即為(7,131)代入可知,=65,預(yù)測該學(xué)生10歲時的身高,將x=10代入方程中,即可知為153,故可知答案為B考點:線性回歸直線方程點評:主要是考查了線性回歸直線方程的回歸系數(shù)的運用,屬于基礎(chǔ)題.3、B【解題分析】

由題意,得出a≠0,再分析不等式開口和判別式,可得結(jié)果.【題目詳解】由題,因為為一元二次不等式,所以a≠0又因為ax所以a>0Δ=故選B【題目點撥】本題考查了一元二次不等式解法,利用二次函數(shù)圖形解題是關(guān)鍵,屬于基礎(chǔ)題.4、C【解題分析】

根據(jù)即可求出結(jié)果.【題目詳解】據(jù)題意,得,所以.【題目點撥】本題考查圓的一般方程,屬于基礎(chǔ)題型.5、B【解題分析】在程序語句中乘方要用“^”表示,所以A項不正確;乘號“*”不能省略,所以C項不正確;D項中應(yīng)用SQR(x)表示,所以D項不正確;B選項是將變量A的相反數(shù)賦給變量A,則B項正確.選B.6、D【解題分析】

先求出基本事件總數(shù),被選中包含的基本事件個數(shù),由此能求出被選中的概率.【題目詳解】從,,三個同學(xué)中選2名代表,基本事件總數(shù)為:,共個,被選中包含的基本事件為:,共2個,被選中的概率.故選:D.【題目點撥】本題考查概率的求法,考查列舉法和運算求解能力,是基礎(chǔ)題.7、B【解題分析】

已知等差數(shù)列中一個獨立條件,考慮利用等差中項求解.【題目詳解】因為為等差數(shù)列,所以,由,,故選B.【題目點撥】本題考查等差數(shù)列的性質(zhì),等差數(shù)列中若,則,或用基本量、表示,整體代換計算可得,屬于簡單題.8、C【解題分析】

由平行公理,若,因為,所以,與、是兩條異面直線矛盾,異面和相交均有可能.【題目詳解】、是兩條異面直線,,那么與異面和相交均有可能,但不會平行.因為若,因為,由平行公理得,與、是兩條異面直線矛盾.故選C.【題目點撥】本題主要考查空間的兩條直線的位置關(guān)系的判斷、平行公理等知識,考查邏輯推理能力,屬于基礎(chǔ)題.9、D【解題分析】

首先求出直線的斜率,由傾斜角與斜率的關(guān)系即可求解.【題目詳解】直線xy+1=0的斜率,設(shè)其傾斜角為θ(0°≤θ<180°),則tan,∴θ=150°故選:D【題目點撥】本題考查直線斜率與傾斜角的關(guān)系,屬于基礎(chǔ)題.10、A【解題分析】

根據(jù)題意作出圖形:設(shè)球心為O,過ABC三點的小圓的圓心為O1,則OO1⊥平面ABC,延長CO1交球于點D,則SD⊥平面ABC.∵CO1=,∴,∴高SD=2OO1=,∵△ABC是邊長為1的正三角形,∴S△ABC=,∴.考點:棱錐與外接球,體積.【名師點睛】本題考查棱錐與外接球問題,首先我們要熟記一些特殊的幾何體與外接球(內(nèi)切球)的關(guān)系,如正方體(長方體)的外接球(內(nèi)切球)球心是對角線的交點,正棱錐的外接球(內(nèi)切球)球心在棱錐的高上,對一般棱錐來講,外接球球心到名頂點距離相等,當(dāng)問題難以考慮時,可減少點的個數(shù),如先考慮到三個頂點的距離相等的點是三角形的外心,球心一定在過此點與此平面垂直的直線上.如直角三角形斜邊中點到三頂點距離相等等等.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】12、4;【解題分析】

根據(jù)賦值語句的作用是將表達式所代表的值賦給變量,然后語句的順序可求出的值.【題目詳解】解:執(zhí)行程序語句:

=1后,=1;

=+1后,=2;

=+2后,=4;

后,輸出值為4;

故答案為:4【題目點撥】本題主要考查了賦值語句的作用,解題的關(guān)鍵對賦值語句的理解,屬于基礎(chǔ)題.13、0.72【解題分析】

根據(jù)對立事件的概率公式即可求解.【題目詳解】由題意,在該產(chǎn)品中任抽一件,“抽到優(yōu)質(zhì)品”與“抽到合格品或次品”是對立事件,所以在該產(chǎn)品中任抽一件,則抽到優(yōu)質(zhì)品的概率為.故答案為【題目點撥】本題主要考查對立事件的概率公式,熟記對立事件的概念及概率計算公式即可求解,屬于基礎(chǔ)題型.14、8【解題分析】

兩直線斜率存在且互相垂直,由斜率乘積為-1求得等式,把目標(biāo)式子化成,運用基本不等式求得最小值.【題目詳解】設(shè)直線的斜率為,,直線的斜率為,,兩條直線垂直,,整理得:,,等號成立當(dāng)且僅當(dāng),的最小值為.【題目點撥】利用“1”的代換,轉(zhuǎn)化成可用基本不等式求最值,考查轉(zhuǎn)化與化歸的思想.15、4【解題分析】

根據(jù)圓臺軸截面等腰梯形計算.【題目詳解】,設(shè)圓高為,由圓臺軸截面是等腰梯形得:,即,,故答案為:4.【題目點撥】本題考查求圓臺的高,解題關(guān)鍵是掌握圓臺的性質(zhì),圓臺軸截面是等腰梯形.16、8【解題分析】

設(shè)等差數(shù)列的公差為,則,所以,故答案為8.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解題分析】

(1)利用兩直線平行的條件進行計算,需注意重合的情況。(2)求出到平行線與距離相等的直線方程為,將其與直線聯(lián)立,得到直線被直線,所截的線段的中點坐標(biāo),進而求出直線的斜率,可得直線的方程?!绢}目詳解】(1)∵直線與平行,∴且,即且,解得.(2)∵,直線:,:故可設(shè)到平行線與距離相等的直線方程為,則,解得:,所以到平行線與距離相等的直線方程為,即直線被直線,所截的線段的中點在上,聯(lián)立,解得,∴過點∴,的方程為:,化簡得:.【題目點撥】本題主要考查直線與直線的位置關(guān)系以及直線斜率、直線的一般方程的求解等知識,解題的關(guān)鍵是熟練掌握兩直線平行的條件,直線的斜率公式,平行線間的距離公式,屬于中檔題。18、(1)3x﹣4y﹣19=1(2)7x﹣y﹣11=1【解題分析】

(1)先求出BC的斜率,再用點斜式求出過點A且平行于BC邊的直線方程;

(2)先求出BC的中點為D的坐標(biāo),再用兩點式求出直線AD的方程.【題目詳解】(1)△ABC中,∵A(1,﹣4),B(6,6),C(﹣2,1),故BC的斜率為,故過點A且平行于BC邊的直線的方程為y+4(x﹣1),即3x﹣4y﹣19=1.(2)BC的中點為D(2,3),由兩點式求出BC邊的中線所在直線AD的方程為,即7x﹣y﹣11=1.【題目點撥】本題主要考查直線的斜率公式,用點斜式、兩點式求直線的方程,屬于基礎(chǔ)題.19、(1);(2).【解題分析】試題分析:(1)利用等差等比基本公式,計算數(shù)列的通項公式;(2)利用裂項相消法求和.試題解析:(1)設(shè)公差為,因為,,成等數(shù)列,所以,即,解得,或(舍去),所以.(2)由(1)知,所以,,所以.20、(1);(2).【解題分析】

(1)求出,,中由余弦定理即可求得;(2)設(shè),利用正弦定理表示出,求得,利用面積公式即可得解.【題目詳解】(1)在中,,為內(nèi)一點,,,所以,中,由余弦定理得:所以中,由余弦定理得:;(2),設(shè),在中,,在中,由正弦定理,即,,所以,的面積.【題目點撥】此題考查解三角形,對正余弦定理的綜合使用,涉及兩角差的正弦公式以及同角三角函數(shù)關(guān)系的使用,綜合性較強.21、(1)(2)該高三學(xué)生的記憶力x和判斷力是正相關(guān);判斷力為4的同學(xué)的記憶力約為9【解題分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論