




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第三章連續(xù)信號(hào)與連續(xù)系統(tǒng)的頻域分析
周期信號(hào)的頻譜分析(傅立葉級(jí)數(shù))
典型周期信號(hào)的頻譜
非周期信號(hào)的頻譜(傅立葉變換)
典型非周期信號(hào)的頻譜
傅立葉變換的性質(zhì)
周期信號(hào)的傅立葉變換
連續(xù)信號(hào)的抽樣定理
連續(xù)系統(tǒng)的頻域分析§3-1
周期信號(hào)的頻譜分析(傅立葉級(jí)數(shù))對(duì)連續(xù)信號(hào)f(t),若存在T>0,使
f(t+mT)=f(t)m為整數(shù),-
<t<+
則為f(t)周期信號(hào)(一)三角型的傅立葉級(jí)數(shù)任何一個(gè)滿(mǎn)足狄里赫利條件的周期為T(mén)的函數(shù)f(t)都可以表示為:上式稱(chēng)為f(t)的三角形式的傅立葉級(jí)數(shù)展開(kāi),其中:ancosn
1t、bnsinn
1t為n次諧波分量
n
1稱(chēng)為n次諧波角頻率;為直流分量a1cos
1t、b1sin
1t為基波分量
1稱(chēng)為基波角頻率若把同頻率項(xiàng)加以合并,即
n代表n次諧波振幅;
n代表n次諧波的初相位其中:三角型簡(jiǎn)潔形式1tTf(t)0例3.1-1已知信號(hào)f(t)為周期函數(shù),其一個(gè)周期的波形如圖,將信號(hào)f(t)展開(kāi)為三角形式的傅立葉級(jí)數(shù)。解:首先根據(jù)公式計(jì)算系數(shù)1tTf(t)01tTf(t)0指數(shù)型傅立葉級(jí)數(shù)(二)指數(shù)型傅立葉級(jí)數(shù)F0FnF-n周期信號(hào)f(t)的指數(shù)型傅立葉級(jí)數(shù)是其中系數(shù)基角頻率例3.1-2已知信號(hào)f(t)為周期函數(shù),其一個(gè)周期的波形如圖,將信號(hào)f(t)展開(kāi)為指數(shù)形式的傅立葉級(jí)數(shù)。1t2f(t)01指數(shù)型傅立葉級(jí)數(shù)是其中系數(shù)基波角頻率n為奇數(shù)例3.1-3已知信號(hào)f(t)為周期函數(shù),其一個(gè)周期的波形如圖,將信號(hào)f(t)展開(kāi)為指數(shù)形式的傅立葉級(jí)數(shù)。1t2f(t)01指數(shù)型傅立葉級(jí)數(shù)是其中系數(shù)基波角頻率F0=c0Fn與cn、
n的關(guān)系§3-2
周期信號(hào)的頻譜其中:cn代表n次諧波的振幅,
n代表n次諧波的初相位,Fn為復(fù)振幅為了表征不同信號(hào)的諧波組成情況,時(shí)常畫(huà)出周期信號(hào)的各次諧波的分布圖,這種圖形稱(chēng)為信號(hào)的頻譜(圖)。振幅頻譜:描述各次諧波振幅與頻率的關(guān)系圖相位頻譜:描述各次諧波相位與頻率的關(guān)系圖周期信號(hào)的頻譜例3-2.1:畫(huà)出連續(xù)時(shí)間信號(hào)f(t)=sin
1t的頻譜圖解:
1-
1n1
n900-900
1n1cn1
1n1
n-900
1-
1n1|Fn|0.5振幅頻譜相位頻譜例3-2.2:畫(huà)出連續(xù)時(shí)間信號(hào)f(t)=1+sin
1t+3cos
1t+cos(2
1t-900)的頻譜圖
1-
1n1
n900-9002
1-2
1
1-
1n1|Fn|2
1-2
1
1n1cn2
10
1n1
n-9002
10振幅頻譜相位頻譜例3.2-3已知某周期信號(hào)f(t)的三角型傅立葉級(jí)數(shù)展開(kāi)式為:f(t)=2+3cos2t+4sin2t+2sin(3t+300)-cos(7t)
試畫(huà)出f(t)的振幅頻譜和相位頻譜解:基波角頻率
1=1
c0=2
0=0c1=0
1=0c2=5
2=-53.130c3=2
3=-600c7=1
6=-300單邊頻譜
n-300-60001234567n
101234567n
1cn125振幅頻譜相位頻譜例3.2-4已知某周期信號(hào)f(t)的指數(shù)型傅立葉級(jí)數(shù)展開(kāi)式為:f(t)=2+2.5/-53.130
ej2t+2.5/53.130
e-j2t
+1/-600
ej3t+1/600
e-j3t+0.5/-300
ej7t+0.5/300
e-j7t
試畫(huà)出f(t)的振幅頻譜和相位頻譜解:基波角頻率
1=1
F0=2/00F2=2.5/-53.130
F-2=2.5/53.130F3=1/-600
F-3=1/600F7=0.5/-300
F-7=0.5/300-7-6-5-4-3-2-101234567n
1|Fn|2
n-300-600-7-6-5-4-3-2-101234567n
1300600雙邊頻譜偶函數(shù)奇函數(shù)振幅頻譜相位頻譜單邊頻譜與雙邊頻譜比較:?jiǎn)芜叄好恳蛔V線(xiàn)代表某一分量的幅度雙邊:譜線(xiàn)在原點(diǎn)兩側(cè)對(duì)稱(chēng)分布,且譜線(xiàn)長(zhǎng)度減小一半,(每一頻率譜線(xiàn)正負(fù)各一半)-7-6-5-4-3-2-101234567n
1|Fn|201234567n
1cn125脈沖寬度為,周期為T(mén),周期矩形脈沖信號(hào)角頻率Ef(t)TtT/2-T/2/2FnE/T
1-2/2/4/0周期矩形脈沖的頻譜特點(diǎn)離散性:周期矩形脈沖的頻譜是離散的線(xiàn)狀頻譜諧波性:各次諧波分量的頻率都是基波頻率
1(等于2/T)的整數(shù)倍。譜線(xiàn)間隔
1與T成反比。收斂性:譜線(xiàn)幅度隨n
而衰減到零。包絡(luò)線(xiàn):各譜線(xiàn)的幅度包絡(luò)線(xiàn)按抽樣函數(shù)
Sa(n
1/2)的規(guī)律變化。FnE/T
1-2/2/4/0周期矩形脈沖信號(hào)包含無(wú)窮多條譜線(xiàn),但它的能量主要集中在第一零點(diǎn)以?xún)?nèi)。把
=0~2/這段頻率范圍稱(chēng)為矩形脈沖信號(hào)的占有頻帶寬度。記作或上式說(shuō)明:信號(hào)的占有頻帶寬度與時(shí)寬
成反比占有頻帶寬度FnE/T
1-
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中外設(shè)備租賃合同(FOB條款)
- 2025標(biāo)準(zhǔn)手寫(xiě)私人租房合同模板示例
- 綜合實(shí)踐類(lèi)題目企業(yè)面試題
- 生態(tài)環(huán)境保護(hù)生態(tài)學(xué)專(zhuān)業(yè)試題及答案
- 2025年西藏貨運(yùn)從業(yè)資格考試試題及答案大全
- 場(chǎng)地租用計(jì)劃書(shū)
- 內(nèi)審財(cái)務(wù)合同樣本
- 2025年稅務(wù)師考試針對(duì)性的知識(shí)點(diǎn)試題及答案
- 公司激勵(lì)股合同樣本
- 農(nóng)莊木頭購(gòu)買(mǎi)合同樣本
- 2024年山東省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 4.1 時(shí)代的主題 課件-2024-2025學(xué)年高中政治統(tǒng)編版選擇性必修一當(dāng)代國(guó)際政治與經(jīng)濟(jì)
- 2024年中國(guó)高低壓電器開(kāi)關(guān)柜市場(chǎng)調(diào)查研究報(bào)告
- 班級(jí)管理-形考任務(wù)2-國(guó)開(kāi)-參考資料
- 黑龍江省哈爾濱市香坊區(qū)風(fēng)華中學(xué)2024-2025學(xué)年九年級(jí)(五四學(xué)制)上學(xué)期10月月考語(yǔ)文試題
- 代理商和廠家拿貨合同范本
- 2024年公開(kāi)招聘工作人員報(bào)名表
- 隱私保護(hù)與數(shù)據(jù)安全合規(guī)性測(cè)試考核試卷
- 2024年云南省昆明市盤(pán)龍區(qū)小升初英語(yǔ)試卷
- 大型群眾性活動(dòng)安全許可申請(qǐng)表
- 聯(lián)合國(guó)可持續(xù)發(fā)展目標(biāo)(SDGs)戰(zhàn)略白皮書(shū)
評(píng)論
0/150
提交評(píng)論