版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
陜西寶雞金臺(tái)區(qū)2023-2024學(xué)年數(shù)學(xué)高三第一學(xué)期期末達(dá)標(biāo)測(cè)試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)過(guò)定點(diǎn)的直線(xiàn)與橢圓:交于不同的兩點(diǎn),,若原點(diǎn)在以為直徑的圓的外部,則直線(xiàn)的斜率的取值范圍為()A. B.C. D.2.某設(shè)備使用年限x(年)與所支出的維修費(fèi)用y(萬(wàn)元)的統(tǒng)計(jì)數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線(xiàn)方程為,若計(jì)劃維修費(fèi)用超過(guò)15萬(wàn)元將該設(shè)備報(bào)廢,則該設(shè)備的使用年限為()A.8年 B.9年 C.10年 D.11年3.《周易》歷來(lái)被人們視作儒家群經(jīng)之首,它表現(xiàn)了古代中華民族對(duì)萬(wàn)事萬(wàn)物的深刻而又樸素的認(rèn)識(shí),是中華人文文化的基礎(chǔ),它反映出中國(guó)古代的二進(jìn)制計(jì)數(shù)的思想方法.我們用近代術(shù)語(yǔ)解釋為:把陽(yáng)爻“-”當(dāng)作數(shù)字“1”,把陰爻“--”當(dāng)作數(shù)字“0”,則八卦所代表的數(shù)表示如下:卦名符號(hào)表示的二進(jìn)制數(shù)表示的十進(jìn)制數(shù)坤0000震0011坎0102兌0113依此類(lèi)推,則六十四卦中的“屯”卦,符號(hào)“”表示的十進(jìn)制數(shù)是()A.18 B.17 C.16 D.154.已知函數(shù),且的圖象經(jīng)過(guò)第一、二、四象限,則,,的大小關(guān)系為()A. B.C. D.5.已知三棱柱()A. B. C. D.6.如圖,棱長(zhǎng)為的正方體中,為線(xiàn)段的中點(diǎn),分別為線(xiàn)段和棱上任意一點(diǎn),則的最小值為()A. B. C. D.7.某公園新購(gòu)進(jìn)盆錦紫蘇、盆虞美人、盆郁金香,盆盆栽,現(xiàn)將這盆盆栽擺成一排,要求郁金香不在兩邊,任兩盆錦紫蘇不相鄰的擺法共()種A. B. C. D.8.已知數(shù)列為等差數(shù)列,且,則的值為()A. B. C. D.9.已知斜率為2的直線(xiàn)l過(guò)拋物線(xiàn)C:的焦點(diǎn)F,且與拋物線(xiàn)交于A,B兩點(diǎn),若線(xiàn)段AB的中點(diǎn)M的縱坐標(biāo)為1,則p=()A.1 B. C.2 D.410.已知集合A,則集合()A. B. C. D.11.已知點(diǎn)在雙曲線(xiàn)上,則該雙曲線(xiàn)的離心率為()A. B. C. D.12.若函數(shù)的定義域?yàn)镸={x|-2≤x≤2},值域?yàn)镹={y|0≤y≤2},則函數(shù)的圖像可能是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐的四個(gè)頂點(diǎn)都在球的球面上,,則球的表面積為_(kāi)_________.14.若,且,則的最小值是______.15.在的展開(kāi)式中,的系數(shù)為_(kāi)_____用數(shù)字作答16.函數(shù)的定義域是___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,且兩坐標(biāo)系取相同的長(zhǎng)度單位.已知曲線(xiàn)的參數(shù)方程:(為參數(shù)),直線(xiàn)的極坐標(biāo)方程:(1)求曲線(xiàn)的極坐標(biāo)方程;(2)若直線(xiàn)與曲線(xiàn)交于、兩點(diǎn),求的最大值.18.(12分)本小題滿(mǎn)分14分)已知曲線(xiàn)的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線(xiàn)的參數(shù)方程為(為參數(shù)),求直線(xiàn)被曲線(xiàn)截得的線(xiàn)段的長(zhǎng)度19.(12分)已知在中,內(nèi)角所對(duì)的邊分別為,若,,且.(1)求的值;(2)求的面積.20.(12分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點(diǎn).(1)求證:.(2)若,求二面角的余弦值.21.(12分)數(shù)列滿(mǎn)足,是與的等差中項(xiàng).(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.22.(10分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
設(shè)直線(xiàn):,,,由原點(diǎn)在以為直徑的圓的外部,可得,聯(lián)立直線(xiàn)與橢圓方程,結(jié)合韋達(dá)定理,即可求得答案.【詳解】顯然直線(xiàn)不滿(mǎn)足條件,故可設(shè)直線(xiàn):,,,由,得,,解得或,,,,,,解得,直線(xiàn)的斜率的取值范圍為.故選:D.【點(diǎn)睛】本題解題關(guān)鍵是掌握橢圓的基礎(chǔ)知識(shí)和圓錐曲線(xiàn)與直線(xiàn)交點(diǎn)問(wèn)題時(shí),通常用直線(xiàn)和圓錐曲線(xiàn)聯(lián)立方程組,通過(guò)韋達(dá)定理建立起目標(biāo)的關(guān)系式,考查了分析能力和計(jì)算能力,屬于中檔題.2、D【解析】
根據(jù)樣本中心點(diǎn)在回歸直線(xiàn)上,求出,求解,即可求出答案.【詳解】依題意在回歸直線(xiàn)上,,由,估計(jì)第年維修費(fèi)用超過(guò)15萬(wàn)元.故選:D.【點(diǎn)睛】本題考查回歸直線(xiàn)過(guò)樣本中心點(diǎn)、以及回歸方程的應(yīng)用,屬于基礎(chǔ)題.3、B【解析】
由題意可知“屯”卦符號(hào)“”表示二進(jìn)制數(shù)字010001,將其轉(zhuǎn)化為十進(jìn)制數(shù)即可.【詳解】由題意類(lèi)推,可知六十四卦中的“屯”卦符號(hào)“”表示二進(jìn)制數(shù)字010001,轉(zhuǎn)化為十進(jìn)制數(shù)的計(jì)算為1×20+1×24=1.故選:B.【點(diǎn)睛】本題主要考查數(shù)制是轉(zhuǎn)化,新定義知識(shí)的應(yīng)用等,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.4、C【解析】
根據(jù)題意,得,,則為減函數(shù),從而得出函數(shù)的單調(diào)性,可比較和,而,比較,即可比較.【詳解】因?yàn)?,且的圖象經(jīng)過(guò)第一、二、四象限,所以,,所以函數(shù)為減函數(shù),函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又因?yàn)椋?,又,,則|,即,所以.故選:C.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性比較大小,還考查化簡(jiǎn)能力和轉(zhuǎn)化思想.5、C【解析】因?yàn)橹比庵?,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過(guò)底面ABC的截面圓的直徑.取BC中點(diǎn)D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對(duì)角線(xiàn)長(zhǎng)即為球直徑,所以2R==13,即R=6、D【解析】
取中點(diǎn),過(guò)作面,可得為等腰直角三角形,由,可得,當(dāng)時(shí),最小,由,故,即可求解.【詳解】取中點(diǎn),過(guò)作面,如圖:則,故,而對(duì)固定的點(diǎn),當(dāng)時(shí),最?。藭r(shí)由面,可知為等腰直角三角形,,故.故選:D【點(diǎn)睛】本題考查了空間幾何體中的線(xiàn)面垂直、考查了學(xué)生的空間想象能力,屬于中檔題.7、B【解析】
間接法求解,兩盆錦紫蘇不相鄰,被另3盆隔開(kāi)有,扣除郁金香在兩邊有,即可求出結(jié)論.【詳解】使用插空法,先排盆虞美人、盆郁金香有種,然后將盆錦紫蘇放入到4個(gè)位置中有種,根據(jù)分步乘法計(jì)數(shù)原理有,扣除郁金香在兩邊,排盆虞美人、盆郁金香有種,再將盆錦紫蘇放入到3個(gè)位置中有,根據(jù)分步計(jì)數(shù)原理有,所以共有種.故選:B.【點(diǎn)睛】本題考查排列應(yīng)用問(wèn)題、分步乘法計(jì)數(shù)原理,不相鄰問(wèn)題插空法是解題的關(guān)鍵,屬于中檔題.8、B【解析】
由等差數(shù)列的性質(zhì)和已知可得,即可得到,代入由誘導(dǎo)公式計(jì)算可得.【詳解】解:由等差數(shù)列的性質(zhì)可得,解得,,故選:B.【點(diǎn)睛】本題考查等差數(shù)列的下標(biāo)和公式的應(yīng)用,涉及三角函數(shù)求值,屬于基礎(chǔ)題.9、C【解析】
設(shè)直線(xiàn)l的方程為x=y(tǒng),與拋物線(xiàn)聯(lián)立利用韋達(dá)定理可得p.【詳解】由已知得F(,0),設(shè)直線(xiàn)l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)C(x0,y0),∴y1+y2=p,又線(xiàn)段AB的中點(diǎn)M的縱坐標(biāo)為1,則y0(y1+y2)=,所以p=2,故選C.【點(diǎn)睛】本題主要考查了直線(xiàn)與拋物線(xiàn)的相交弦問(wèn)題,利用韋達(dá)定理是解題的關(guān)鍵,屬中檔題.10、A【解析】
化簡(jiǎn)集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點(diǎn)睛】本題考查集合間的運(yùn)算,屬于基礎(chǔ)題.11、C【解析】
將點(diǎn)A坐標(biāo)代入雙曲線(xiàn)方程即可求出雙曲線(xiàn)的實(shí)軸長(zhǎng)和虛軸長(zhǎng),進(jìn)而求得離心率.【詳解】將,代入方程得,而雙曲線(xiàn)的半實(shí)軸,所以,得離心率,故選C.【點(diǎn)睛】此題考查雙曲線(xiàn)的標(biāo)準(zhǔn)方程和離心率的概念,屬于基礎(chǔ)題.12、B【解析】因?yàn)閷?duì)A不符合定義域當(dāng)中的每一個(gè)元素都有象,即可排除;對(duì)B滿(mǎn)足函數(shù)定義,故符合;對(duì)C出現(xiàn)了定義域當(dāng)中的一個(gè)元素對(duì)應(yīng)值域當(dāng)中的兩個(gè)元素的情況,不符合函數(shù)的定義,從而可以否定;對(duì)D因?yàn)橹涤虍?dāng)中有的元素沒(méi)有原象,故可否定.故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
如圖所示,將三棱錐補(bǔ)成長(zhǎng)方體,球?yàn)殚L(zhǎng)方體的外接球,長(zhǎng)、寬、高分別為,計(jì)算得到,得到答案.【詳解】如圖所示,將三棱錐補(bǔ)成長(zhǎng)方體,球?yàn)殚L(zhǎng)方體的外接球,長(zhǎng)、寬、高分別為,則,所以,所以球的半徑,則球的表面積為.故答案為:.【點(diǎn)睛】本題考查了三棱錐的外接球問(wèn)題,意在考查學(xué)生的計(jì)算能力和空間想象能力,將三棱錐補(bǔ)成長(zhǎng)方體是解題的關(guān)鍵.14、8【解析】
利用的代換,將寫(xiě)成,然后根據(jù)基本不等式求解最小值.【詳解】因?yàn)椋慈〉忍?hào)),所以最小值為.【點(diǎn)睛】已知,求解()的最小值的處理方法:利用,得到,展開(kāi)后利用基本不等式求解,注意取等號(hào)的條件.15、1【解析】
利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出展開(kāi)式的通項(xiàng),令,求出展開(kāi)式中的系數(shù).【詳解】二項(xiàng)展開(kāi)式的通項(xiàng)為令得的系數(shù)為故答案為1.【點(diǎn)睛】利用二項(xiàng)展開(kāi)式的通項(xiàng)公式是解決二項(xiàng)展開(kāi)式的特定項(xiàng)問(wèn)題的工具.16、【解析】
由于偶次根式中被開(kāi)方數(shù)非負(fù),對(duì)數(shù)的真數(shù)要大于零,然后解不等式組可得答案.【詳解】解:由題意得,,解得,所以,故答案為:【點(diǎn)睛】此題考查函數(shù)定義域的求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)10【解析】
(1)消去參數(shù),可得曲線(xiàn)C的普通方程,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,代入即可求得曲線(xiàn)C的極坐標(biāo)方程;(2)將代入曲線(xiàn)C的極坐標(biāo)方程,利用根與系數(shù)的關(guān)系,求得,進(jìn)而得到=,結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由題意,曲線(xiàn)C的參數(shù)方程為,消去參數(shù),可得曲線(xiàn)C的普通方程為,即,又由,代入可得曲線(xiàn)C的極坐標(biāo)方程為.(2)將代入,得,即,所以=,其中,當(dāng)時(shí),取最大值,最大值為10.【點(diǎn)睛】本題主要考查了參數(shù)方程與普通方程,極坐標(biāo)方程與直角坐標(biāo)方程的互化,以及曲線(xiàn)的極坐標(biāo)方程的應(yīng)用,著重考查了運(yùn)算與求解能力,屬于中檔試題.18、【解析】解:解:將曲線(xiàn)的極坐標(biāo)方程化為直角坐標(biāo)方程為,即,它表示以為圓心,2為半徑圓,………4分直線(xiàn)方程的普通方程為,………8分圓C的圓心到直線(xiàn)l的距離,……………10分故直線(xiàn)被曲線(xiàn)截得的線(xiàn)段長(zhǎng)度為.……………14分19、(1);(2)【解析】
(1)將代入等式,結(jié)合正弦定理將邊化為角,再將及代入,即可求得的值;(2)根據(jù)(1)中的值可求得和,進(jìn)而可得,由三角形面積公式即可求解.【詳解】(1)由,得,由正弦定理將邊化為角可得,∵,∴,∴,化簡(jiǎn)可得,∴解得.(2)∵在中,,∴,∴,∴,∴.【點(diǎn)睛】本題考查了正弦定理在邊角轉(zhuǎn)化中的應(yīng)用,正弦差角公式的應(yīng)用,三角形面積公式求法,屬于基礎(chǔ)題.20、(1)見(jiàn)解析(2)【解析】
(1)由已知可證明平面,從而得證面面垂直,再由,得線(xiàn)面垂直,從而得,由直角三角形得結(jié)論;(2)以為軸建立空間直角坐標(biāo)系,用空間向量法示二面角.【詳解】(1)證明:連接,,.,,平面.平面,平面平面.,為的中點(diǎn),.平面平面,平面.平面,.為斜邊的中點(diǎn),,(2),由(1)可知,為等腰直角三角形,則.以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,,,則,記平面的法向量為由得到,取,可得,則.易知平面的法向量為.記二面角的平面角為,且由圖可知為銳角,則,所以二面角的余弦值為.【點(diǎn)睛】本題考查用面面垂直的性質(zhì)定理證明線(xiàn)面垂直,從而得線(xiàn)線(xiàn)垂直,考查用空間向量法求二面角.在立體幾何中求異面直線(xiàn)成的角、直線(xiàn)與平面所成的角、二面角等空間角時(shí),可以建立空間直角坐標(biāo)系,用空間向量法求解空間角,可避免空間角的作證過(guò)程,通過(guò)計(jì)算求解.21、(1)見(jiàn)解析,(2)【解析】
(1)根據(jù)等差中項(xiàng)的定義得,然后構(gòu)造新等比數(shù)列
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人裝修貸款合同范本參考4篇
- 2024年中班科學(xué)《空氣》教案
- 屋面保溫工程施工方案
- 2024年學(xué)校食堂食品安全管理制度(30篇)
- 景觀河道施工方案
- 二零二五年度綠色建筑設(shè)計(jì)與施工借款合同參考格式4篇
- 2025年牧草種子銷(xiāo)售與農(nóng)業(yè)技術(shù)培訓(xùn)合同3篇
- 年度家居棉品競(jìng)爭(zhēng)策略分析報(bào)告
- 鴨子拌嘴課程設(shè)計(jì)
- 部編版語(yǔ)文七年級(jí)上冊(cè)《藤野先生》教學(xué)設(shè)計(jì)(第1課時(shí))
- 艾灸燙傷應(yīng)急預(yù)案
- 自媒體內(nèi)容版權(quán)合同
- 獵聘-2024高校畢業(yè)生就業(yè)數(shù)據(jù)報(bào)告
- 2024虛擬現(xiàn)實(shí)產(chǎn)業(yè)布局白皮書(shū)
- 車(chē)站值班員(中級(jí))鐵路職業(yè)技能鑒定考試題及答案
- JTG∕T E61-2014 公路路面技術(shù)狀況自動(dòng)化檢測(cè)規(guī)程
- 高中英語(yǔ)短語(yǔ)大全(打印版)
- 軟件研發(fā)安全管理制度
- 三位數(shù)除以?xún)晌粩?shù)-豎式運(yùn)算300題
- 寺院消防安全培訓(xùn)課件
- 比摩阻-管徑-流量計(jì)算公式
評(píng)論
0/150
提交評(píng)論