上海魯迅中學2023-2024學年高三數(shù)學第一學期期末調研模擬試題含解析_第1頁
上海魯迅中學2023-2024學年高三數(shù)學第一學期期末調研模擬試題含解析_第2頁
上海魯迅中學2023-2024學年高三數(shù)學第一學期期末調研模擬試題含解析_第3頁
上海魯迅中學2023-2024學年高三數(shù)學第一學期期末調研模擬試題含解析_第4頁
上海魯迅中學2023-2024學年高三數(shù)學第一學期期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海魯迅中學2023-2024學年高三數(shù)學第一學期期末調研模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.192.已知,復數(shù),,且為實數(shù),則()A. B. C.3 D.-33.已知隨機變量的分布列是則()A. B. C. D.4.若復數(shù)滿足,則(其中為虛數(shù)單位)的最大值為()A.1 B.2 C.3 D.45.某個命題與自然數(shù)有關,且已證得“假設時該命題成立,則時該命題也成立”.現(xiàn)已知當時,該命題不成立,那么()A.當時,該命題不成立 B.當時,該命題成立C.當時,該命題不成立 D.當時,該命題成立6.已知,是橢圓與雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.67.已知等差數(shù)列的前項和為,若,則等差數(shù)列公差()A.2 B. C.3 D.48.已知為虛數(shù)單位,若復數(shù),,則A. B.C. D.9.已知集合,則=()A. B. C. D.10.已知正方體的棱長為2,點在線段上,且,平面經過點,則正方體被平面截得的截面面積為()A. B. C. D.11.已知數(shù)列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.1912.設,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若方程的解為,(),則_______;_______.14.如圖,在中,已知,為邊的中點.若,垂足為,則的值為__.15.已知拋物線的焦點為,其準線與坐標軸交于點,過的直線與拋物線交于兩點,若,則直線的斜率________.16.展開式中的系數(shù)為_________.(用數(shù)字做答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2019年入冬時節(jié),長春市民為了迎接2022年北京冬奧會,增強身體素質,積極開展冰上體育鍛煉.現(xiàn)從速滑項目中隨機選出100名參與者,并由專業(yè)的評估機構對他們的鍛煉成果進行評估打分(滿分為100分)并且認為評分不低于80分的參與者擅長冰上運動,得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長冰上運動進行統(tǒng)計,請將下列列聯(lián)表補充完整,并判斷能否在犯錯誤的概率在不超過0.01的前提下認為擅長冰上運動與性別有關系?擅長不擅長合計男性30女性50合計1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)18.(12分)已知點到拋物線C:y1=1px準線的距離為1.(Ⅰ)求C的方程及焦點F的坐標;(Ⅱ)設點P關于原點O的對稱點為點Q,過點Q作不經過點O的直線與C交于兩點A,B,直線PA,PB,分別交x軸于M,N兩點,求的值.19.(12分)如圖,三棱臺中,側面與側面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.20.(12分)已知函數(shù).(1)證明:當時,;(2)若函數(shù)有三個零點,求實數(shù)的取值范圍.21.(12分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點.(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.22.(10分)已知函數(shù).(1)討論的零點個數(shù);(2)證明:當時,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

計算,故,解得答案.【詳解】當時,,即,且.故,,故.故選:.【點睛】本題考查了數(shù)列的相關計算,意在考查學生的計算能力和對于數(shù)列公式方法的綜合應用.2、B【解析】

把和代入再由復數(shù)代數(shù)形式的乘法運算化簡,利用虛部為0求得m值.【詳解】因為為實數(shù),所以,解得.【點睛】本題考查復數(shù)的概念,考查運算求解能力.3、C【解析】

利用分布列求出,求出期望,再利用期望的性質可求得結果.【詳解】由分布列的性質可得,得,所以,,因此,.故選:C.【點睛】本題考查離散型隨機變量的分布列以及期望的求法,是基本知識的考查.4、B【解析】

根據(jù)復數(shù)的幾何意義可知復數(shù)對應的點在以原點為圓心,1為半徑的圓上,再根據(jù)復數(shù)的幾何意義即可確定,即可得的最大值.【詳解】由知,復數(shù)對應的點在以原點為圓心,1為半徑的圓上,表示復數(shù)對應的點與點間的距離,又復數(shù)對應的點所在圓的圓心到的距離為1,所以.故選:B【點睛】本題考查了復數(shù)模的定義及其幾何意義應用,屬于基礎題.5、C【解析】

寫出命題“假設時該命題成立,則時該命題也成立”的逆否命題,結合原命題與逆否命題的真假性一致進行判斷.【詳解】由逆否命題可知,命題“假設時該命題成立,則時該命題也成立”的逆否命題為“假設當時該命題不成立,則當時該命題也不成立”,由于當時,該命題不成立,則當時,該命題也不成立,故選:C.【點睛】本題考查逆否命題與原命題等價性的應用,解題時要寫出原命題的逆否命題,結合逆否命題的等價性進行判斷,考查邏輯推理能力,屬于中等題.6、C【解析】

由橢圓的定義以及雙曲線的定義、離心率公式化簡,結合基本不等式即可求解.【詳解】設橢圓的長半軸長為,雙曲線的半實軸長為,半焦距為,則,,設由橢圓的定義以及雙曲線的定義可得:,則當且僅當時,取等號.故選:C.【點睛】本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.7、C【解析】

根據(jù)等差數(shù)列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計算能力,屬于中檔題.8、B【解析】

由可得,所以,故選B.9、D【解析】

先求出集合A,B,再求集合B的補集,然后求【詳解】,所以.故選:D【點睛】此題考查的是集合的并集、補集運算,屬于基礎題.10、B【解析】

先根據(jù)平面的基本性質確定平面,然后利用面面平行的性質定理,得到截面的形狀再求解.【詳解】如圖所示:確定一個平面,因為平面平面,所以,同理,所以四邊形是平行四邊形.即正方體被平面截的截面.因為,所以,即所以由余弦定理得:所以所以四邊形故選:B【點睛】本題主要考查平面的基本性質,面面平行的性質定理及截面面積的求法,還考查了空間想象和運算求解的能力,屬于中檔題.11、B【解析】

由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時,a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數(shù)k(k?5)時,要使得a1則ak+1則k=17,故選:B.【點睛】本題考查與遞推數(shù)列相關的方程的整數(shù)解的求法,注意將題設中的遞推關系變形得到新的遞推關系,從而可簡化與數(shù)列相關的方程,本題屬于難題.12、D【解析】

集合是一次不等式的解集,分別求出再求交集即可【詳解】,,則故選【點睛】本題主要考查了一次不等式的解集以及集合的交集運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出在上的對稱軸,依據(jù)對稱性可得的值;由可得,依據(jù)可求出的值.【詳解】解:令,解得因為,所以關于對稱.則.由,則由可知,,又因為,所以,則,即故答案為:;.【點睛】本題考查了三角函數(shù)的對稱軸,考查了誘導公式,考查了同角三角函數(shù)的基本關系.本題的易錯點在于沒有正確判斷的取值范圍,導致求出.在求的對稱軸時,常用整體代入法,即令進行求解.14、【解析】

,由余弦定理,得,得,,,所以,所以.點睛:本題考查平面向量的綜合應用.本題中存在垂直關系,所以在線性表示的過程中充分利用垂直關系,得到,所以本題轉化為求長度,利用余弦定理和面積公式求解即可.15、【解析】

求出拋物線焦點坐標,由,結合向量的坐標運算得,直線方程為,代入拋物線方程后應用韋達定理得,,從而可求得,得斜率.【詳解】由得,即聯(lián)立得解得或,∴.故答案為:.【點睛】本題考查直線與拋物線相交,考查向量的線性運算的坐標表示.直線方程與拋物線方程聯(lián)立后消元,應用韋達定理是解決直線與拋物線相交問題的常用方法.16、210【解析】

轉化,只有中含有,即得解.【詳解】只有中含有,其中的系數(shù)為故答案為:210【點睛】本題考查了二項式系數(shù)的求解,考查了學生概念理解,轉化劃歸,數(shù)學運算的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)填表見解析;不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系【解析】

(1)利用頻率分布直方圖小長方形的面積和為列方程,解方程求得的值.(2)根據(jù)表格數(shù)據(jù)填寫列聯(lián)表,計算出的值,由此判斷不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.【詳解】(1)由題意,解得.(2)由頻率分布直方圖可得不擅長冰上運動的人數(shù)為.完善列聯(lián)表如下:擅長不擅長合計男性203050女性104050合計3070100,對照表格可知,,不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.【點睛】本小題主要考查根據(jù)頻率分布直方圖計算小長方形的高,考查列聯(lián)表獨立性檢驗,屬于基礎題.18、(Ⅰ)C的方程為,焦點F的坐標為(1,0);(Ⅱ)1【解析】

(Ⅰ)根據(jù)拋物線定義求出p,即可求C的方程及焦點F的坐標;

(Ⅱ)設點A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0,設直線AB的方程為y=k(x+1)?1(k≠0),與拋物線聯(lián)立可得ky1-4y+4k-8=0,利用韋達定理以及弦長公式,轉化求解|MF|?|NF|的值.【詳解】(Ⅰ)由已知得,所以p=1.所以拋物線C的方程為,焦點F的坐標為(1,0);(II)設點A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0.設直線AB的方程為y=k(x+1)?1(k≠0).由得,則,.因為點A,B在拋物線C上,所以,.因為PF⊥x軸,所以,所以|MF|?|NF|的值為1.【點睛】本題考查拋物線的定義、標準方程及直線與拋物線中的定值問題,常用韋達定理設而不求來求解,本題解題關鍵是找出弦長與斜率之間的關系進行求解,屬于中等題.19、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進而得線面平行;(Ⅱ)過點作的垂線,建立空間直角坐標系,不妨設,則求得平面的法向量為,設平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內,過點作的垂線,如圖建立空間直角坐標系,不妨設,則,故點,;設平面的法向量為,則有:;設平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.20、(1)見解析;(2)【解析】

(1)要證明,只需證明即可;(2)有3個根,可轉化為有3個根,即與有3個不同交點,利用導數(shù)作出的圖象即可.【詳解】(1)令,則,當時,,故在上單調遞增,所以,即,所以.(2)由已知,,依題意,有3個零點,即有3個根,顯然0不是其根,所以有3個根,令,則,當時,,當時,,當時,,故在單調遞減,在,上單調遞增,作出的圖象,易得.故實數(shù)的取值范圍為.【點睛】本題考查利用導數(shù)證明不等式以及研究函數(shù)零點個數(shù)問題,考查學生數(shù)形結合的思想,是一道中檔題.21、(1)見解析;(2).【解析】試題分析:(1)根據(jù)平面有,利用勾股定理可證明,故平面,再由面面垂直的判定定理可證得結論;(2)在點建立空間直角坐標系,利用二面角的余弦值為建立方程求得,在利用法向量求得和平面所成角的正弦值.試題解析:(Ⅰ)平面平面因為,所以,所以,所以,又,所以平面.因為平面,所以平面平面.(Ⅱ)如圖,以點為原點,分別為軸、軸、軸正方向,建立空間直角坐標系,則.設,則取,則為面法向量.設為面的法向量,則,即,取,則依題意,則.于是.設直線與平面所成角為,則即直線與平面所成角的正弦值為.22、(1)見解析(2)見解析【解析】

(1)求出,分別以當,,時,結合函數(shù)的單調性和最值判斷零點的個數(shù).(2)令,結合導數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論