河南省鶴壁市浚縣第二高級中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末達標(biāo)檢測試題含解析_第1頁
河南省鶴壁市??h第二高級中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末達標(biāo)檢測試題含解析_第2頁
河南省鶴壁市??h第二高級中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末達標(biāo)檢測試題含解析_第3頁
河南省鶴壁市??h第二高級中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末達標(biāo)檢測試題含解析_第4頁
河南省鶴壁市浚縣第二高級中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末達標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省鶴壁市??h第二高級中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末達標(biāo)檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某校高二理(1)班學(xué)習(xí)興趣小組為了調(diào)查學(xué)生喜歡數(shù)學(xué)課的人數(shù)比例,設(shè)計了如下調(diào)查方法:(1)在本校中隨機抽取100名學(xué)生,并編號1,2,3,…,100;(2)在箱內(nèi)放置了兩個黃球和三個紅球,讓抽取到的100名學(xué)生分別從箱中隨機摸出一球,記住其顏色并放回;(3)請下列兩類學(xué)生站出來,一是摸到黃球且編號數(shù)為奇數(shù)的學(xué)生,二是摸到紅球且不喜歡數(shù)學(xué)課的學(xué)生。若共有32名學(xué)生站出來,那么請用統(tǒng)計的知識估計該校學(xué)生中喜歡數(shù)學(xué)課的人數(shù)比例大約是()A.80% B.85% C.90% D.92%2.已知,,則的最大值為()A.9 B.3 C.1 D.273.連續(xù)兩次拋擲一枚質(zhì)地均勻的硬幣,出現(xiàn)正面向上與反面向上各一次的概率是(

)A. B. C. D.4.已知:平面內(nèi)不再同一條直線上的四點、、、滿足,若,則()A.1 B.2 C. D.5.直線在軸上的截距為,在軸上的截距為,則()A. B. C. D.6.已知一個幾何體是由半徑為2的球挖去一個三棱錐得到(三棱錐的頂點均在球面上).若該幾何體的三視圖如圖所示(側(cè)視圖中的四邊形為菱形),則該三棱錐的體積為()A. B. C. D.7.已知數(shù)列是公差不為零的等差數(shù)列,是等比數(shù)列,,,則下列說法正確的是()A. B.C. D.與的大小不確定8.若,則下列不等式成立的是()A. B.C. D.9.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如.在不超過30的素數(shù)中,隨機選取兩個不同的數(shù),其和等于30的概率是A. B. C. D.10.“”是“直線(m+1)x+3my+2=0與直線(m-2)x+(m+1)y-1=0相互垂直”的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.若首項為,公比為()的等比數(shù)列滿足,則的取值范圍是________.12.若,則的值為_______.13.已知等比數(shù)列中,,,則該等比數(shù)列的公比的值是______.14.設(shè),,,,則數(shù)列的通項公式=.15.若數(shù)列滿足,且對于任意的,都有,則___;數(shù)列前10項的和____.16.已知數(shù)列為等比數(shù)列,,,則數(shù)列的公比為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期為π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.18.等差數(shù)列中,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和.19.已知數(shù)列滿足,且(,且).(1)求證:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項公式(3)設(shè)數(shù)列的前項和,求證:.20.已知等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.21.已知數(shù)列的前項和,且;(1)求它的通項.(2)若,求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】

先分別計算號數(shù)為奇數(shù)的概率、摸到黃球的概率、摸到紅球的概率,從而可得摸到黃球且號數(shù)為奇數(shù)的學(xué)生,進而可得摸到紅球且不喜歡數(shù)學(xué)課的學(xué)生人數(shù),由此可得估計該校學(xué)生中喜歡數(shù)學(xué)課的人數(shù)比例.【題目詳解】解:由題意,號數(shù)為奇數(shù)的概率為0.5,摸到黃球的概率為,摸到紅球的概率為那么按概率計算摸到黃球且號數(shù)為奇數(shù)的學(xué)生有個共有32名學(xué)生站出來,則有12個摸到紅球且不喜歡數(shù)學(xué)課的學(xué)生,不喜歡數(shù)學(xué)課的學(xué)生有:,喜歡數(shù)學(xué)課的有80個,估計該校學(xué)生中喜歡數(shù)學(xué)課的人數(shù)比例大約是:.故選:.【題目點撥】本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.2、B【解題分析】

由已知,可利用柯西不等式,構(gòu)造柯西不等式,即可求解.【題目詳解】由已知,可知,,利用柯西不等式,可構(gòu)造得,即,所以的最大值為3,故選B.【題目點撥】本題主要考查了柯西不等式的應(yīng)用,其中解答中熟記柯西不等式,合理構(gòu)造柯西不等式求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.3、C【解題分析】

利用列舉法求得基本事件的總數(shù),利用古典概型的概率計算公式,即可求解.【題目詳解】由題意,連續(xù)兩次拋擲一枚質(zhì)地均勻的硬幣,基本事件包含:(正面,正面),(正面,反面),(反面,正面),(反面,反面),共有4中情況,出現(xiàn)正面向上與反面向上各一次,包含基本事件:(正面,反面),(反面,正面),共2種,所以的概率為,故選C.【題目點撥】本題主要考查了古典概型及其概率的計算問題,其中解答中熟練利用列舉法求得基本事件的總數(shù)是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.4、D【解題分析】

根據(jù)向量的加法原理對已知表示式轉(zhuǎn)化為所需向量的運算對照向量的系數(shù)求解.【題目詳解】根據(jù)向量的加法原理得所以,,解得且故選D.【題目點撥】本題考查向量的線性運算,屬于基礎(chǔ)題.5、B【解題分析】

令求,利用求.【題目詳解】令,由得:,所以令,由得:,所以,故選B.【題目點撥】本題考查了直線的截距問題,直線方程,令解出,得到直線的縱截距.令解出,得到直線的橫截距.6、C【解題分析】由三視圖可知,三棱錐的體積為7、A【解題分析】

設(shè)等比數(shù)列的公比為,結(jié)合題中條件得出且,將、、、用與表示,利用因式分解思想以及基本不等式可得出與的不等關(guān)系,并結(jié)合等差數(shù)列下標(biāo)和性質(zhì)可得出與的大小關(guān)系.【題目詳解】設(shè)等比數(shù)列的公比為,由于等差數(shù)列是公差不為零,則,從而,且,得,,,即,另一方面,由等差數(shù)列的性質(zhì)可得,因此,,故選:A.【題目點撥】本題考查等差數(shù)列和等比數(shù)列性質(zhì)的應(yīng)用,解題的關(guān)鍵在于將等比中的項利用首項和公比表示,并進行因式分解,考查分析問題和解決問題的能力,屬于中等題.8、B【解題分析】

利用不等式的性質(zhì),進行判斷即可.【題目詳解】因為,故由均值不等式可知:;因為,故;因為,故;綜上所述:.故選:B.【題目點撥】本題考查均值不等式及利用不等式性質(zhì)比較大小.9、C【解題分析】分析:先確定不超過30的素數(shù),再確定兩個不同的數(shù)的和等于30的取法,最后根據(jù)古典概型概率公式求概率.詳解:不超過30的素數(shù)有2,3,5,7,11,13,17,19,23,29,共10個,隨機選取兩個不同的數(shù),共有種方法,因為,所以隨機選取兩個不同的數(shù),其和等于30的有3種方法,故概率為,選C.點睛:古典概型中基本事件數(shù)的探求方法:(1)列舉法.(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復(fù)雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素數(shù)目較多的題目.10、B【解題分析】試題分析:當(dāng)時,直線為和直線,斜率之積等于,所以垂直;當(dāng)兩直線垂直時,,解得:或,根據(jù)充分條件必要條件概念知,“”是“直線(m+1)x+3my+2=0與直線(m-2)x+(m+1)y-1=0相互垂直”的充分不必要條件,故選B.考點:1、充分條件、必要條件;2、兩條直線垂直的關(guān)系.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

由題意可得且,即且,,化簡可得由不等式的性質(zhì)可得的取值范圍.【題目詳解】解:,故有且,化簡可得且即故答案為:【題目點撥】本題考查數(shù)列極限以及不等式的性質(zhì),屬于中檔題.12、【解題分析】

把已知等式展開利用二倍角余弦公式及兩角和的余弦公式,整理后兩邊平方求解.【題目詳解】解:由,得,,則,兩邊平方得:,即.故答案為.【題目點撥】本題考查三角函數(shù)的化簡求值,考查倍角公式的應(yīng)用,是基礎(chǔ)題.13、【解題分析】

根據(jù)等比通項公式即可求解【題目詳解】故答案為:【題目點撥】本題考查等比數(shù)列公比的求解,屬于基礎(chǔ)題14、2n+1【解題分析】由條件得,且,所以數(shù)列是首項為4,公比為2的等比數(shù)列,則.15、,【解題分析】試題分析:由得由得,所以數(shù)列為等比數(shù)列,因此考點:等比數(shù)列通項與和項16、【解題分析】

設(shè)等比數(shù)列的公比為,由可求出的值.【題目詳解】設(shè)等比數(shù)列的公比為,則,,因此,數(shù)列的公比為,故答案為:.【題目點撥】本題考查等比數(shù)列公比的計算,在等比數(shù)列的問題中,通常將數(shù)列中的項用首項和公比表示,建立方程組來求解,考查運算求解能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)().【解題分析】試題分析:(Ⅰ)運用兩角和的正弦公式對f(x)化簡整理,由周期公式求ω的值;(Ⅱ)根據(jù)函數(shù)y=sinx的單調(diào)遞增區(qū)間對應(yīng)求解即可.試題解析:(Ⅰ)因為,所以的最小正周期.依題意,,解得.(Ⅱ)由(Ⅰ)知.函數(shù)的單調(diào)遞增區(qū)間為().由,得.所以的單調(diào)遞增區(qū)間為().【考點】兩角和的正弦公式、周期公式、三角函數(shù)的單調(diào)性.【名師點睛】三角函數(shù)的單調(diào)性:1.三角函數(shù)單調(diào)區(qū)間的確定,一般先將函數(shù)式化為基本三角函數(shù)標(biāo)準(zhǔn)式,然后通過同解變形或利用數(shù)形結(jié)合方法求解.關(guān)于復(fù)合函數(shù)的單調(diào)性的求法;2.利用三角函數(shù)的單調(diào)性比較兩個同名三角函數(shù)值的大小,必須先看兩角是否同屬于這一函數(shù)的同一單調(diào)區(qū)間內(nèi),不屬于的,可先化至同一單調(diào)區(qū)間內(nèi).若不是同名三角函數(shù),則應(yīng)考慮化為同名三角函數(shù)或用差值法(例如與0比較,與1比較等)求解.18、(1);(2).【解題分析】

(1)根據(jù)等差數(shù)列公式得到方程組,計算得到答案.(2)先求出,再利用裂項求和求得.【題目詳解】(1)等差數(shù)列中,,解得:(2)數(shù)列的前n項和.【題目點撥】本題考查了數(shù)列的通項公式,裂項求和,意在考查學(xué)生對于數(shù)列公式的靈活運用及計算能力.19、(1)詳見解析;(2);(3)詳見解析.【解題分析】

(1)用定義證明得到答案.(2)推出(3)利用錯位相減法和分組求和法得到,再證明不等式.【題目詳解】解:(1)由,得,即.∴數(shù)列是以為首項,1為公差的等差數(shù)列.(2)∵數(shù)列是以為首項,1為公差的等差數(shù)列,∴,∴.(3).∴,∴.【題目點撥】本題考查了等差數(shù)列的證明,分組求和法,錯位相減法,意在考查學(xué)生對于數(shù)列公式方法的靈活運用.20、(1)(2)【解題分析】

(1)先設(shè)等差數(shù)列的公差為,根據(jù)題中條件求出公差,即可得出通項公式;(2)根據(jù)前項和公式,即可求出結(jié)果.【題目詳解】(1)依題意,設(shè)等差數(shù)列的公差為,因為,所以,又,所以公差,所以.(2)由(1)知,,所以【題目點撥】本題主要考查等差數(shù)列,熟記等差數(shù)列的通項公式與前項和公式即可,屬于基礎(chǔ)題型.2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論