版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省淮安市淮安中學(xué)2024屆數(shù)學(xué)高一第二學(xué)期期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如果執(zhí)行右面的框圖,輸入,則輸出的數(shù)等于()A. B. C. D.2.的周期為()A. B. C. D.3.在等差數(shù)列中,若,,則()A. B.1 C. D.4.已知正方體ABCD-ABCD中,E、F分別為BB、CC的中點(diǎn),那么異面直線AE與DF所成角的余弦值為()A. B.C. D.5.如圖是正方體的平面展開圖,則在這個正方體中:①與平行②與是異面直線③與成角
④與是異面直線以上四個命題中,正確命題的個數(shù)是()A.1 B.2 C.3 D.46.在中,角的對邊分別為,且,,,則的周長為()A. B. C. D.7.在ΔABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.若a:b:c=3:4:5,則cosA.35 B.45 C.8.設(shè)函數(shù),其中為已知實(shí)常數(shù),,則下列命題中錯誤的是()A.若,則對任意實(shí)數(shù)恒成立;B.若,則函數(shù)為奇函數(shù);C.若,則函數(shù)為偶函數(shù);D.當(dāng)時,若,則().9.經(jīng)過兩條直線和的交點(diǎn),且垂直于直線的直線方程為()A. B. C. D.10.已知平面平面,直線平面,直線平面,,在下列說法中,①若,則;②若,則;③若,則.正確結(jié)論的序號為()A.①②③ B.①② C.①③ D.②③二、填空題:本大題共6小題,每小題5分,共30分。11.若等比數(shù)列滿足,且公比,則_____.12.把一枚質(zhì)地均勻的硬幣先后拋擲兩次,兩次都是正面向上的概率為________.13.在數(shù)列an中,a1=2,a14.如圖,長方體中,,,,與相交于點(diǎn),則點(diǎn)的坐標(biāo)為______________.15.若首項為,公比為()的等比數(shù)列滿足,則的取值范圍是________.16.某程序框圖如圖所示,則該程序運(yùn)行后輸出的S的值為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在直四棱柱中,底面為等腰梯形,,,,,??分別是??的中點(diǎn).(1)證明:直線平面;(2)求直線與面所成角的大??;(3)求二面角的平面角的余弦值.18.設(shè)函數(shù)f(x)=x(1)當(dāng)a=2時,函數(shù)f(x)的圖像經(jīng)過點(diǎn)(1,a+1),試求m的值,并寫出(不必證明)f(x)的單調(diào)遞減區(qū)間;(2)設(shè)a=-1,h(x)+x?f(x)=0,g(x)=2cos(x-π3),若對于任意的s∈[1,2],總存在t∈[0,π]19.已知數(shù)列滿足:,,.(1)求、、;(2)求證:數(shù)列為等比數(shù)列,并求其通項公式;(3)求和.20.某班在一次個人投籃比賽中,記錄了在規(guī)定時間內(nèi)投進(jìn)個球的人數(shù)分布情況:進(jìn)球數(shù)(個)012345投進(jìn)個球的人數(shù)(人)1272其中和對應(yīng)的數(shù)據(jù)不小心丟失了,已知進(jìn)球3個或3個以上,人均投進(jìn)4個球;進(jìn)球5個或5個以下,人均投進(jìn)2.5個球.(1)投進(jìn)3個球和4個球的分別有多少人?(2)從進(jìn)球數(shù)為3,4,5的所有人中任取2人,求這2人進(jìn)球數(shù)之和為8的概率.21.已知函數(shù)當(dāng)時,求函數(shù)的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】試題分析:當(dāng)時,該程序框圖所表示的算法功能為:,故選D.考點(diǎn):程序框圖.2、D【解題分析】
根據(jù)正弦型函數(shù)最小正周期的結(jié)論即可得到結(jié)果.【題目詳解】函數(shù)的最小正周期故選:【題目點(diǎn)撥】本題考查正弦型函數(shù)周期的求解問題,關(guān)鍵是明確正弦型函數(shù)的最小正周期.3、C【解題分析】
運(yùn)用等差數(shù)列的性質(zhì)求得公差d,再運(yùn)用通項公式解得首項即可.【題目詳解】由題意知,所以.故選C.【題目點(diǎn)撥】本題考查等差數(shù)列的通項公式的運(yùn)用,等差數(shù)列的性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.4、C【解題分析】
連接DF,因?yàn)镈F與AE平行,所以∠DFD即為異面直線AE與DF所成角的平面角,設(shè)正方體的棱長為2,則FD=FD=,由余弦定理得cos∠DFD==.5、B【解題分析】
把平面展開圖還原原幾何體,再由棱柱的結(jié)構(gòu)特征及異面直線定義、異面直線所成角逐一核對四個命題得答案.【題目詳解】把平面展開圖還原原幾何體如圖:由正方體的性質(zhì)可知,與異面且垂直,故①錯誤;與平行,故②錯誤;連接,則,為與所成角,連接,可知為正三角形,則,故③正確;由異面直線的定義可知,與是異面直線,故④正確.∴正確命題的個數(shù)是2個.故選:B.【題目點(diǎn)撥】本題考查棱柱的結(jié)構(gòu)特征,考查異面直線定義及異面直線所成角,是中檔題.6、C【解題分析】
根據(jù),得到,利用余弦定理,得到關(guān)于的方程,從而得到的值,得到的周長.【題目詳解】在中,由正弦定理因?yàn)?,所以因?yàn)椋?,所以由余弦定理得即,解得,所以所以的周長為.故選C.【題目點(diǎn)撥】本題考查正弦定理的角化邊,余弦定理解三角形,屬于簡單題.7、D【解題分析】
設(shè)a=3k,b=4k,c=5k,利用余弦定理求cosC的值.【題目詳解】設(shè)a=3k,b=4k,c=5k,所以cosC=故選D【題目點(diǎn)撥】本題主要考查余弦定理,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.8、D【解題分析】
利用兩角和的余弦公式化簡表達(dá)式.對于A選項,將化簡得到的表達(dá)式代入上述表達(dá)式,可判斷出A選項為真命題.對于B選項,將化簡得到的表達(dá)式代入上述表達(dá)式,可判斷出為奇函數(shù),由此判斷出B選項為真命題.對于C選項,將化簡得到的表達(dá)式代入上述表達(dá)式,可判斷出為偶函數(shù),由此判斷出C選項為真命題.對于D選項,根據(jù)、,求得的零點(diǎn)的表達(dá)式,由此求得(),進(jìn)而判斷出D選項為假命題.【題目詳解】.不妨設(shè).為已知實(shí)常數(shù).若,則得;若,則得.于是當(dāng)時,對任意實(shí)數(shù)恒成立,即命題A是真命題;當(dāng)時,,它為奇函數(shù),即命題B是真命題;當(dāng)時,,它為偶函數(shù),即命題C是真命題;當(dāng)時,令,則,上述方程中,若,則,這與矛盾,所以.將該方程的兩邊同除以得,令(),則,解得().不妨取,(且),則,即(),所以命題D是假命題.故選:D【題目點(diǎn)撥】本小題主要考查兩角和的余弦公式,考查三角函數(shù)的奇偶性,考查三角函數(shù)零點(diǎn)有關(guān)問題的求解,考查同角三角函數(shù)的基本關(guān)系式,屬于中檔題.9、D【解題分析】
首先求出兩條直線的交點(diǎn)坐標(biāo),再根據(jù)垂直求出斜率,點(diǎn)斜式寫方程即可.【題目詳解】有題知:,解得:,交點(diǎn).直線的斜率為,所求直線斜率為.所求直線為:,即.故選:D【題目點(diǎn)撥】本題主要考查如何求兩條直線的交點(diǎn)坐標(biāo),同時考查了兩條直線的位置關(guān)系,屬于簡單題.10、D【解題分析】
由面面垂直的性質(zhì)和線線的位置關(guān)系可判斷①;由面面垂直的性質(zhì)定理可判斷②;由線面垂直的性質(zhì)定理可判斷③.【題目詳解】平面平面.直線平面,直線平面,,①若,可得,可能平行,故①錯誤;②若,由面面垂直的性質(zhì)定理可得,故②正確;③若,可得,故③正確.故選:D.【題目點(diǎn)撥】本題考查空間線線和線面、面面的位置關(guān)系,主要是平行和垂直的判斷和性質(zhì),考查推理能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解題分析】
利用等比數(shù)列的通項公式及其性質(zhì)即可得出.【題目詳解】,故答案為:1.【題目點(diǎn)撥】本題考查了等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于容易題.12、【解題分析】
把一枚質(zhì)地均勻的硬幣先后拋擲兩次,利用列舉法求出基本事件有4個,由此能求出兩次都是正面向上的概率.【題目詳解】把一枚質(zhì)地均勻的硬幣先后拋擲兩次,基本事件有4個,分別為:正正,正反,反正,反反,兩次都是正面向上的概率為.故答案為:.【題目點(diǎn)撥】本題考查古典概型的概率計算,求解時注意列舉法的應(yīng)用,即列舉出所有等可能結(jié)果.13、2+【解題分析】
因?yàn)閍1∴a∴=(=2+ln14、【解題分析】
易知是的中點(diǎn),求出的坐標(biāo),根據(jù)中點(diǎn)坐標(biāo)公式求解.【題目詳解】可知,,由中點(diǎn)坐標(biāo)公式得的坐標(biāo)公式,即【題目點(diǎn)撥】本題考查空間直角坐標(biāo)系和中點(diǎn)坐標(biāo)公式,空間直角坐標(biāo)的讀取是易錯點(diǎn).15、【解題分析】
由題意可得且,即且,,化簡可得由不等式的性質(zhì)可得的取值范圍.【題目詳解】解:,故有且,化簡可得且即故答案為:【題目點(diǎn)撥】本題考查數(shù)列極限以及不等式的性質(zhì),屬于中檔題.16、1【解題分析】
根據(jù)程序框圖,依次計算運(yùn)行結(jié)果,發(fā)現(xiàn)輸出的S值周期變化,利用終止運(yùn)行的條件判斷即可求解【題目詳解】由程序框圖得:S=1,k=1;第一次運(yùn)行S=1第二次運(yùn)行S=第三次運(yùn)行S=1當(dāng)k=2020,程序運(yùn)行了2019次,2019=4×504+3,故S的值為1故答案為1【題目點(diǎn)撥】本題考查程序框圖,根據(jù)程序的運(yùn)行功能判斷輸出值的周期變化是關(guān)鍵,是基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(3)【解題分析】
(1)取的中點(diǎn),證明為平行四邊形,且,再由三角形中位線證明,最后由線面平行的判定定理證明即可;(2)作交于點(diǎn),由線面垂直關(guān)系得到直線與面所成角為,再根據(jù)是正三角形求解即可;(3)由(2)知,平面,再證明和分別垂直于,求出直線與面所成角為,再求出和的長度即可求解.【題目詳解】(1)在直四棱柱中,取的中點(diǎn),連接,,,因?yàn)?,,且,所以為平行四邊形,所以,又因?yàn)?分別是棱?的中點(diǎn),所以,所以,因?yàn)?所以???四點(diǎn)共面,所以平面,又因?yàn)槠矫?,所以直線平面.(2)因?yàn)?,,是棱的中點(diǎn),所以,為正三角形,取的中點(diǎn),則,又因?yàn)橹彼睦庵校矫?,所以,所以平面,即直線與面所成角為,所以,即,所以直線與面所成角為.(3)過在平面內(nèi)作,垂足為,連接.因?yàn)槊妫?,且與相交于點(diǎn),故且,則為二面角的平面角,在正三角形中,,在中,,∵,∴,在中,,,所以二面角的余弦值為.【題目點(diǎn)撥】本題主要考查線面平行的判定、線面角和二面角的求法,考查學(xué)生的空間想象能力和對線面關(guān)系的掌握,屬于中檔題.18、(1)遞減區(qū)間為[-2,0)和(0,2【解題分析】
(1)將點(diǎn)(1,3)代入函數(shù)f(x)即可求出m,根據(jù)函數(shù)的解析式寫出單調(diào)遞減區(qū)間即可(2)當(dāng)a=-1時,寫出函數(shù)h(x),由題意知h(s)的值域是g(t)值域的子集,即可求出.【題目詳解】(1)因?yàn)楹瘮?shù)f(x)的圖像經(jīng)過點(diǎn)(1,a+1),且a=2所以f(1)=1+m+2=3,解得m=0.∴????∴f(x)的單調(diào)遞減區(qū)間為[-2,0)(2)當(dāng)a=-1時,f(x)=x-1∴???∵g(x)=2cos∴??t∈[0,π]時,g(t)∈[-1,2]由對于任意的s∈[1,2],總存在t∈[0,π],使得h(s)=g(t)知:h(s)的值域是g(t)值域的子集.因?yàn)閔(x)=-x2-mx+1①當(dāng)-m2≤1只需滿足h(1)=-m≤2h(2)=-3-2m≥-1解得-2≤m≤-1.②當(dāng)1<-m2<2因?yàn)閔(1)=-m>2,與h(s)?[-1,2]矛盾,故舍去.③當(dāng)-m2≥2h(1)=-m≥4與h(s)?[-1,2]矛盾,故舍去.綜上,m∈[-2,-1].【題目點(diǎn)撥】本題主要考查了函數(shù)的單調(diào)性,以及含參數(shù)二次函數(shù)值域的求法,涉及存在性問題,轉(zhuǎn)化思想和分類討論思想要求較高,屬于難題.19、(1);(2)證明見解析;(3).【解題分析】
(1)直接帶入遞推公式即可(2)證明等于一個常數(shù)即可。(3)根據(jù)(2)的結(jié)果即可求出,從而求出?!绢}目詳解】(1),,可得;,;(2)證明:,可得數(shù)列為公比為,首項為等比數(shù)列,即;(3)由(2)可得,.【題目點(diǎn)撥】本題主要考查了根據(jù)通項求數(shù)列中的某一項,以及證明是等比數(shù)列和求前偶數(shù)項和的問題,在這里主要用了分組求和的方法。20、(1)投進(jìn)3個球和4個球的分別有2人和2人;(2).【解題分析】
(1)設(shè)投進(jìn)3個球和4個球的分別有,人,則,解方程組即得解.(2)利用古典概型的概率求這2人進(jìn)球數(shù)之和為8的概率.【題目詳解】解:(1)設(shè)投進(jìn)3個球和4個球的分別有,人,則解得.故投進(jìn)3個球和4個球的分別有2人和2人.(2)若要使進(jìn)球數(shù)之和為8,則1人投進(jìn)3球,另1人投進(jìn)5球或2人都各投進(jìn)4球.記投進(jìn)3球的2人為,;投進(jìn)4球的2人為,;投進(jìn)5球的2人為,.則從這6人中任選2人的所有可能事件為:,,,,,,,,,,,,,,.共15種.其中進(jìn)球數(shù)之和為8的是,,,,,有5種.所以這2人進(jìn)球數(shù)之和為8的概率為.【題目點(diǎn)撥】本題主要考查平均數(shù)的計算和古典概型的概率的計算,意在考查
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度廚師餐飲項目投資合作協(xié)議8篇
- 2025年度林木種植基地林業(yè)科研合作承包合同3篇
- 2024年教育科技產(chǎn)品代工開發(fā)合同范本3篇
- 2024版計算機(jī)技術(shù)援助及服務(wù)協(xié)議版B版
- 二零二五年度建筑用金屬材料采購合同范本3篇
- 專屬2024版代理合作協(xié)議模板版B版
- 二零二五年度天然氣管道租賃與運(yùn)營合同
- 二零二五版酒店員工福利及獎勵計劃合作合同范本3篇
- 2025年度海洋工程設(shè)備拆除與環(huán)保修復(fù)承包合同3篇
- 二零二五年度農(nóng)民工勞動權(quán)益維護(hù)合同范本
- 2024年萍鄉(xiāng)衛(wèi)生職業(yè)學(xué)院單招職業(yè)技能測試題庫標(biāo)準(zhǔn)卷
- 2024年高考數(shù)學(xué)(理)試卷(全國甲卷)(空白卷)
- DB32-T 4444-2023 單位消防安全管理規(guī)范
- 臨床三基考試題庫(附答案)
- 合同簽訂執(zhí)行風(fēng)險管控培訓(xùn)
- 九宮數(shù)獨(dú)200題(附答案全)
- 人員密集場所消防安全管理培訓(xùn)
- PTW-UNIDOS-E-放射劑量儀中文說明書
- JCT587-2012 玻璃纖維纏繞增強(qiáng)熱固性樹脂耐腐蝕立式貯罐
- 典范英語2b課文電子書
- 員工信息登記表(標(biāo)準(zhǔn)版)
評論
0/150
提交評論