甘肅省白銀市會寧縣四中2024屆數(shù)學(xué)高一第二學(xué)期期末調(diào)研試題含解析_第1頁
甘肅省白銀市會寧縣四中2024屆數(shù)學(xué)高一第二學(xué)期期末調(diào)研試題含解析_第2頁
甘肅省白銀市會寧縣四中2024屆數(shù)學(xué)高一第二學(xué)期期末調(diào)研試題含解析_第3頁
甘肅省白銀市會寧縣四中2024屆數(shù)學(xué)高一第二學(xué)期期末調(diào)研試題含解析_第4頁
甘肅省白銀市會寧縣四中2024屆數(shù)學(xué)高一第二學(xué)期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

甘肅省白銀市會寧縣四中2024屆數(shù)學(xué)高一第二學(xué)期期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列是公差不為零的等差數(shù)列,函數(shù)是定義在上的單調(diào)遞增的奇函數(shù),數(shù)列的前項和為,對于命題:①若數(shù)列為遞增數(shù)列,則對一切,②若對一切,,則數(shù)列為遞增數(shù)列③若存在,使得,則存在,使得④若存在,使得,則存在,使得其中正確命題的個數(shù)為()A.0 B.1 C.2 D.32.以下現(xiàn)象是隨機現(xiàn)象的是A.標(biāo)準(zhǔn)大氣壓下,水加熱到100℃,必會沸騰B.長和寬分別為a,b的矩形,其面積為C.走到十字路口,遇到紅燈D.三角形內(nèi)角和為180°3.點,,直線與線段相交,則實數(shù)的取值范圍是()A. B.或C. D.或4.角的終邊過點,則等于()A. B. C. D.5.用斜二測畫法畫一個邊長為2的正三角形的直觀圖,則直觀圖的面積是:A. B. C. D.6.定義運算:.若不等式的解集是空集,則實數(shù)的取值范圍是()A. B.C. D.7.給定函數(shù):①;②;③;④,其中奇函數(shù)是()A.① B.② C.③ D.④8.南北朝數(shù)學(xué)家祖暅在推導(dǎo)球的體積公式時構(gòu)造了一個中間空心的幾何體,經(jīng)后繼學(xué)者改進(jìn)后這個中間空心的幾何體其三視圖如圖所示,下列那個值最接近該幾何體的體積()A.8 B.12 C.16 D.249.我國古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中提出割圓術(shù):“割之彌細(xì),所失彌少,割之割,以至于不可割,則與圓合體,而無所失矣”,即通過圓內(nèi)接正多邊形細(xì)割圓,并使正多邊形的面積無限接近圓的面積,進(jìn)而來求得較為精確的圓周率.如果用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值記為,那么用圓的內(nèi)接正邊形逼近圓,算得圓周率的近似值加可表示成()A. B. C. D.10.一實體店主對某種產(chǎn)品的日銷售量(單位:件)進(jìn)行為期n天的數(shù)據(jù)統(tǒng)計,得到如下統(tǒng)計圖,則下列說法錯誤的是()A. B.中位數(shù)為17C.眾數(shù)為17 D.日銷售量不低于18的頻率為0.5二、填空題:本大題共6小題,每小題5分,共30分。11.給出下列語句:①若為正實數(shù),,則;②若為正實數(shù),,則;③若,則;④當(dāng)時,的最小值為,其中結(jié)論正確的是___________.12.某學(xué)校高一年級舉行選課培訓(xùn)活動,共有1024名學(xué)生、家長、老師參加,其中家長256人.學(xué)校按學(xué)生、家長、老師分層抽樣,從中抽取64人,進(jìn)行某問卷調(diào)查,則抽到的家長有___人13.函數(shù),的反函數(shù)為__________.14.函數(shù)的最小正周期是____.15.不共線的三個平面向量,,兩兩所成的角相等,且,,則__________.16.關(guān)于的方程只有一個實數(shù)根,則實數(shù)_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),為實數(shù).(1)若對任意,都有成立,求實數(shù)的值;(2)若,求函數(shù)的最小值.18.如圖所示,函數(shù)的圖象與軸交于點,且該函數(shù)的最小正周期為.(1)求和的值;(2)已知點,點是該函數(shù)圖象上一點,點是的中點,當(dāng)時,求的值.19.某高校自主招生一次面試成績的莖葉圖和頻率分布直方圖均收到了不同程度的損壞,其可見部分信息如下,據(jù)此解答下列問題:(1)求參加此次高校自主招生面試的總?cè)藬?shù)、面試成績的中位數(shù)及分?jǐn)?shù)在內(nèi)的人數(shù);(2)若從面試成績在內(nèi)的學(xué)生中任選三人進(jìn)行隨機復(fù)查,求恰好有二人分?jǐn)?shù)在內(nèi)的概率.20.已知,設(shè).(1)若圖象中相鄰兩條對稱軸間的距離不小于,求的取值范圍;(2)若的最小正周期為,且當(dāng)時,的最大值是,求的解析式,并說明如何由的圖象變換得到的圖象.21.已知函數(shù)的定義域為A,的定義域為B.(1)若,求的取值范圍;(2)若,求實數(shù)的值及實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

利用函數(shù)奇偶性和單調(diào)性,通過舉例和證明逐項分析.【題目詳解】①取,,則,故①錯;②對一切,,則,又因為是上的單調(diào)遞增函數(shù),所以,若遞減,設(shè),且,且,所以,則,則,與題設(shè)矛盾,所以遞增,故②正確;③取,則,,令,所以,但是,故③錯誤;④因為,所以,所以,則,則,則存在,使得,故④正確.故選:C.【題目點撥】本題函數(shù)性質(zhì)與數(shù)列的綜合,難度較難.分析存在性問題時,如果比較難分析,也可以從反面去舉例子說明命題不成立,這也是一種常規(guī)思路.2、C【解題分析】

對每一個選項逐一分析判斷得解.【題目詳解】A.標(biāo)準(zhǔn)大氣壓下,水加熱到100℃,必會沸騰,是必然事件;B.長和寬分別為a,b的矩形,其面積為,是必然事件;C.走到十字路口,遇到紅燈,是隨機事件;D.三角形內(nèi)角和為180°,是必然事件.故選C【題目點撥】本題主要考查必然事件、隨機事件的定義與判斷,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.3、B【解題分析】

根據(jù),在直線異側(cè)或其中一點在直線上列不等式求解即可.【題目詳解】因為直線與線段相交,所以,,在直線異側(cè)或其中一點在直線上,所以,解得或,故選B.【題目點撥】本題主要考查點與直線的位置關(guān)系,考查了一元二次不等式的解法,屬于基礎(chǔ)題.4、B【解題分析】由三角函數(shù)的定義知,x=-1,y=2,r==,∴sinα==.5、C【解題分析】分析:先根據(jù)直觀圖畫法得底不變,為2,再研究高,最后根據(jù)三角形面積公式求結(jié)果.詳解:因為根據(jù)直觀圖畫法得底不變,為2,高為,所以直觀圖的面積是選C.點睛:本題考查直觀圖畫法,考查基本求解能力.6、B【解題分析】

根據(jù)定義可得的解集是空集,即恒成立,再對分類討論可得結(jié)果.【題目詳解】由題意得的解集是空集,即恒成立.當(dāng)時,不等式即為,不等式恒成立;當(dāng)時,若不等式恒成立,則即解得.綜上可知:.故選:B【題目點撥】本題考查了二次不等式的恒成立問題,考查了分類討論思想,屬于基礎(chǔ)題.7、D【解題分析】試題分析:,知偶函數(shù),,知非奇非偶,知偶函數(shù),,知奇函數(shù).考點:函數(shù)奇偶性定義.8、C【解題分析】

由三視圖確定此幾何體的結(jié)構(gòu),圓柱的體積減去同底同高的圓錐的體積即為所求.【題目詳解】該幾何體是一個圓柱挖掉一個同底同高的圓錐,圓柱底為2,高為2,所求體積為,所以C選項最接近該幾何體的體積.故選:C【題目點撥】本題考查由三視圖確定幾何體的結(jié)構(gòu)及求其體積,屬于基礎(chǔ)題.9、C【解題分析】

設(shè)圓的半徑為,由內(nèi)接正邊形的面積無限接近圓的面積可得:,由內(nèi)接正邊形的面積無限接近圓的面積可得:,問題得解.【題目詳解】設(shè)圓的半徑為,將內(nèi)接正邊形分成個小三角形,由內(nèi)接正邊形的面積無限接近圓的面積可得:,整理得:,此時,即:同理,由內(nèi)接正邊形的面積無限接近圓的面積可得:,整理得:此時所以故選C【題目點撥】本題主要考查了圓的面積公式及三角形面積公式的應(yīng)用,還考查了正弦的二倍角公式,考查計算能力,屬于中檔題.10、B【解題分析】

由統(tǒng)計圖,可計算出總數(shù)、中位數(shù)、眾數(shù),算得銷量不低于18件的天數(shù),即可求得頻率.【題目詳解】由統(tǒng)計圖可知,總數(shù),所以A正確;從統(tǒng)計圖可以看出,從小到大排列時,中間兩天的銷售量的平均值為,所以B錯誤;從統(tǒng)計圖可以看出,銷量最高的為17件,所以C正確;從統(tǒng)計圖可知,銷量不低于18的天數(shù)為,所以頻率為,所以D正確.綜上可知,錯誤的為B故選:B【題目點撥】本題考查了統(tǒng)計中的總數(shù)、中位數(shù)、眾數(shù)和頻率的相關(guān)概念和性質(zhì),屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、①③.【解題分析】

利用作差法可判斷出①正確;通過反例可排除②;根據(jù)不等式的性質(zhì)可知③正確;根據(jù)的范圍可求得的范圍,根據(jù)對號函數(shù)圖象可知④錯誤.【題目詳解】①,為正實數(shù),,即,可知①正確;②若,,,則,可知②錯誤;③若,可知,則,即,可知③正確;④當(dāng)時,,由對號函數(shù)圖象可知:,可知④錯誤.本題正確結(jié)果:①③【題目點撥】本題考查不等式性質(zhì)的應(yīng)用、作差法比較大小問題、利用對號函數(shù)求解最值的問題,屬于常規(guī)題型.12、16【解題分析】

利用分層抽樣的性質(zhì),直接計算,即可求得,得到答案.【題目詳解】由題意,可知共有1024名學(xué)生、家長、老師參加,其中家長256人,通過分層抽樣從中抽取64人,進(jìn)行某問卷調(diào)查,則抽到的家長人數(shù)為人.故答案為16【題目點撥】本題主要考查了分層抽樣的應(yīng)用,其中解答中熟記分層抽樣的概念和性質(zhì),準(zhǔn)確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.13、【解題分析】

將函數(shù)變形為的形式,然后得到反函數(shù),注意定義域.【題目詳解】因為,所以,則反函數(shù)為:且.【題目點撥】本題考查反三角函數(shù)的知識,難度較易.給定定義域的時候,要注意函數(shù)定義域.14、【解題分析】

將三角函數(shù)化簡為標(biāo)準(zhǔn)形式,再利用周期公式得到答案.【題目詳解】由于所以【題目點撥】本題考查了三角函數(shù)的化簡,周期公式,屬于簡單題.15、4【解題分析】

故答案為:4【題目點撥】本題主要考查向量的位置關(guān)系,考查向量模的運算的處理方法.由于三個向量兩兩所成的角相等,故它們兩兩的夾角為,由于它們的模都是已知的,故它們兩兩的數(shù)量積也可以求出來,對后平方再開方,就可以計算出最后結(jié)果.16、【解題分析】

首先從方程看是不能直接解出這個方程的根的,因此可以轉(zhuǎn)化成函數(shù),從函數(shù)的奇偶性出發(fā)?!绢}目詳解】設(shè),則∴為偶函數(shù),其圖象關(guān)于軸對稱,又依題意只有一個零點,故此零點只能是,所以,∴,∴,∴,∴,故答案為:【題目點撥】本題主要考查了函數(shù)奇偶性以及零點與方程的關(guān)系,方程的根就是對應(yīng)函數(shù)的零點,本題屬于基礎(chǔ)題。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】

(1)根據(jù)二次函數(shù)的解析式寫出對稱軸即可;(2)根據(jù)對稱軸是否在定義域內(nèi)進(jìn)行分類討論,由二次函數(shù)的圖象可分別得出函數(shù)的最小值.【題目詳解】(1)對任意,都有成立,則函數(shù)的對稱軸為,即,解得實數(shù)的值為.(2)二次函數(shù),開口向上,對稱軸為①若,即時,函數(shù)在上單調(diào)遞增,的最小值為;②若,即時,函數(shù)在上單調(diào)遞減,的最小值為;③若,即時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,的最小值為;綜上可得:【題目點撥】本題考查二次函數(shù)的圖象與性質(zhì),應(yīng)用了分類討論的思想,屬于中檔題.18、(1)..(2),或.【解題分析】試題分析:(1)由三角函數(shù)圖象與軸交于點可得,則.由最小正周期公式可得.(2)由題意結(jié)合中點坐標(biāo)公式可得點的坐標(biāo)為.代入三角函數(shù)式可得,結(jié)合角的范圍求解三角方程可得,或.試題解析:(1)將代入函數(shù)中,得,因為,所以.由已知,且,得.(2)因為點是的中點,,所以點的坐標(biāo)為.又因為點在的圖象上,且,所以,且,從而得,或,即,或.19、(1);;(2)0.6【解題分析】

(1)從分?jǐn)?shù)落在,的頻率為,人數(shù)為2,求出總?cè)藬?shù)的值,從而求出面試成績的中位數(shù)及分?jǐn)?shù)在,內(nèi)的人數(shù);(2)用列舉法列出所有可能結(jié)果,確定其中符合要求的事件,即可求出概率.【題目詳解】(1)∵分?jǐn)?shù)落在的頻率為,人數(shù)為2,∴,故,∵分?jǐn)?shù)在的人數(shù)為15人,∴分?jǐn)?shù)在的人數(shù)為人,又∵分?jǐn)?shù)在的人數(shù)為人,∴分?jǐn)?shù)在的人數(shù)為人,面試成績的中位數(shù)為分;(2)由(1)知分?jǐn)?shù)在的有5人,分?jǐn)?shù)在內(nèi)的有3人,記分?jǐn)?shù)在的5人為1,2,3,4,5號,分?jǐn)?shù)在內(nèi)的3人為1,2,3號,則從這5人中任選3人的基本事件為:123,124,125,134,135,145,234,235,245,345,共10種方式;其中恰有2人的分?jǐn)?shù)在內(nèi)的基本事件為:124,125,134,135,234,235,共6種方式,所以所求概率為.【題目點撥】本題考查頻率分布直方圖和莖葉圖的綜合應(yīng)用,考查古典概型的概率求法,屬于基礎(chǔ)題.20、(1);(2);平移變換過程見解析.【解題分析】

(1)根據(jù)平面向量的坐標(biāo)運算,表示出的解析式,結(jié)合輔助角公式化簡三角函數(shù)式.結(jié)合相鄰兩條對稱軸間的距離不小于及周期公式,即可求得的取值范圍;(2)根據(jù)最小正周期,求得的值.代入解析式,結(jié)合正弦函數(shù)的圖象、性質(zhì)與的最大值是,即可求得的解析式.再根據(jù)三角函數(shù)圖象平移變換,即可描述變換過程.【題目詳解】∵∴∴(1)由題意可知,∴又,∴(2)∵,∴∴∵,∴∴當(dāng)即時∴∴將

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論