2024屆上海市封浜高中高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第1頁
2024屆上海市封浜高中高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第2頁
2024屆上海市封浜高中高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第3頁
2024屆上海市封浜高中高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第4頁
2024屆上海市封浜高中高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆上海市封浜高中高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.不等式的解集為,則不等式的解集為()A.或 B. C. D.或2.中,角的對邊分別為,且,則角()A. B. C. D.3.如圖,在平面直角坐標(biāo)系xOy中,角α0≤α≤π的始邊為x軸的非負(fù)半軸,終邊與單位圓的交點(diǎn)為A,將OA繞坐標(biāo)原點(diǎn)逆時針旋轉(zhuǎn)π2至OB,過點(diǎn)B作x軸的垂線,垂足為Q.記線段BQ的長為y,則函數(shù)A. B.C. D.4.函數(shù)的最小正周期為,則圖象的一條對稱軸方程是()A. B. C. D.5.過兩點(diǎn),的直線的傾斜角為,則實(shí)數(shù)=()A.-1 B.1C. D.6.若直線與函數(shù)的圖象相鄰的兩個交點(diǎn)之間的距離為1,則函數(shù)圖象的對稱中心為()A. B. C. D.7.已知,,三點(diǎn),則的形狀是()A.鈍角三角形 B.直角三角形C.銳角三角形 D.等腰直角三角形8.在中,角的對邊分別為,,且邊,則面積的最大值為()A. B. C. D.9.從集合中隨機(jī)抽取一個數(shù),從集合中隨機(jī)抽取一個數(shù),則向量與向量垂直的概率為()A. B. C. D.10.=()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,長方體中,,,,與相交于點(diǎn),則點(diǎn)的坐標(biāo)為______________.12.已知P1(x1,y1),P2(x2,y2)是以原點(diǎn)O為圓心的單位圓上的兩點(diǎn),∠P1OP2=θ(θ為鈍角).若,則x1x2+y1y2的值為_____.13.在三棱錐P-ABC中,平面PAB⊥平面ABC,ΔABC是邊長為23的等邊三角形,其中PA=PB=14.若,方程的解為______.15.不等式的解集為_________.16.在等差數(shù)列中,,,則的值為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在中,,,,.(Ⅰ)求AB;(Ⅱ)求AD.18.已知在四棱錐中,底面是矩形,平面,,分別是,的中點(diǎn),與平面所成的角的正切值是;(1)求證:平面;(2)求二面角的正切值.19.已知函數(shù).(1)當(dāng)時,判斷并證明函數(shù)的奇偶性;(2)當(dāng)時,判斷并證明函數(shù)在上的單調(diào)性.20.如圖,正方體棱長為,連接,,,,,,得到一個三棱錐,求:(1)三棱錐的表面積與正方體表面積的比值;(2)三棱錐的體積.21.為了對某課題進(jìn)行研究,用分層抽樣方法從三所高校,,的相關(guān)人員中,抽取若干人組成研究小組,有關(guān)數(shù)據(jù)見下表(單位:人).高校相關(guān)人員抽取人數(shù)A18B362C54(1)求,;(2)若從高校,抽取的人中選2人做專題發(fā)言,求這2人都來自高校的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解題分析】不等式的解集為,的兩根為,,且,即,解得則不等式可化為解得故選2、B【解題分析】

根據(jù)題意結(jié)合正弦定理,由題,可得三角形為等邊三角形,即可得解.【題目詳解】由題:即,中,由正弦定理可得:,即,兩邊同時平方:,由題,所以,即,所以,即為等邊三角形,所以.故選:B【題目點(diǎn)撥】此題考查利用正弦定理進(jìn)行邊角互化,根據(jù)邊的關(guān)系判斷三角形的形狀,求出三角形的內(nèi)角.3、B【解題分析】BQ=|y點(diǎn)睛:有關(guān)函數(shù)圖象識別問題的常見題型及解題思路(1)由解析式確定函數(shù)圖象的判斷技巧:(1)由函數(shù)的定義域,判斷圖象左右的位置,由函數(shù)的值域,判斷圖象的上下位置;②由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;③由函數(shù)的奇偶性,判斷圖象的對稱性;④由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).(2)由實(shí)際情景探究函數(shù)圖象.關(guān)鍵是將問題轉(zhuǎn)化為熟悉的數(shù)學(xué)問題求解,要注意實(shí)際問題中的定義域問題.4、D【解題分析】

先根據(jù)函數(shù)的周期求出的值,求出函數(shù)的對稱軸方程,然后利用賦值法可得出函數(shù)圖象的一條對稱軸方程.【題目詳解】由于函數(shù)的最小正周期為,則,,令,解得.當(dāng)時,函數(shù)圖象的一條對稱軸方程為.故選:D.【題目點(diǎn)撥】本題考查利用正弦型函數(shù)的周期求參數(shù),同時也考查了正弦型函數(shù)圖象對稱軸方程的計(jì)算,解題時要結(jié)合正弦函數(shù)的基本性質(zhì)來進(jìn)行求解,考查運(yùn)算求解能力,屬于中等題.5、A【解題分析】

根據(jù)兩點(diǎn)的斜率公式及傾斜角和斜率關(guān)系,即可求得的值.【題目詳解】過兩點(diǎn),的直線斜率為由斜率與傾斜角關(guān)系可知即解得故選:A【題目點(diǎn)撥】本題考查了兩點(diǎn)間的斜率公式,直線的斜率與傾斜角關(guān)系,屬于基礎(chǔ)題.6、A【解題分析】

先計(jì)算周期得到,得到函數(shù)表達(dá)式,再根據(jù)中心對稱公式得到答案.【題目詳解】直線與函數(shù)的圖象相鄰的兩個交點(diǎn)之間的距離為1則的對稱中心橫坐標(biāo)為:對稱中心為故答案選A【題目點(diǎn)撥】本題考查了函數(shù)的周期,對稱中心,意在考查學(xué)生綜合應(yīng)用能力.7、D【解題分析】

計(jì)算三角形三邊長度,通過邊關(guān)系進(jìn)行判斷.【題目詳解】由兩點(diǎn)之間的距離公式可得:,,,因?yàn)?,且故該三角形為等腰直角三角?故選:D.【題目點(diǎn)撥】本題考查兩點(diǎn)之間的距離公式,屬基礎(chǔ)題.8、D【解題分析】

由已知利用同角三角函數(shù)基本關(guān)系式可求,根據(jù)余弦定理,基本不等式可求的最大值,進(jìn)而利用三角形面積公式即可求解.【題目詳解】解:,可解得:,由余弦定理,可得,即,當(dāng)且僅當(dāng)時成立.等號當(dāng)時成立.故選D.【題目點(diǎn)撥】本題主要考查了余弦定理,三角形面積公式的應(yīng)用,屬于基本知識的考查.9、B【解題分析】

通過向量垂直的條件即可判斷基本事件的個數(shù),從而求得概率.【題目詳解】基本事件總數(shù)為,當(dāng)時,,滿足的基本事件有,,,共3個,故所求概率為,故選B.【題目點(diǎn)撥】本題主要考查古典概型,計(jì)算滿足條件的基本事件個數(shù)是解題的關(guān)鍵,意在考查學(xué)生的分析能力.10、A【解題分析】

試題分析:由誘導(dǎo)公式,故選A.考點(diǎn):誘導(dǎo)公式.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

易知是的中點(diǎn),求出的坐標(biāo),根據(jù)中點(diǎn)坐標(biāo)公式求解.【題目詳解】可知,,由中點(diǎn)坐標(biāo)公式得的坐標(biāo)公式,即【題目點(diǎn)撥】本題考查空間直角坐標(biāo)系和中點(diǎn)坐標(biāo)公式,空間直角坐標(biāo)的讀取是易錯點(diǎn).12、-【解題分析】

先利用平面向量數(shù)量積的定義和坐標(biāo)運(yùn)算得到,再利用兩角和的正弦公式和平方關(guān)系進(jìn)行求解.【題目詳解】根據(jù)題意知,又P1,P2在單位圓上,,即x1x2+y1y2=cosθ;∵①又sin2θ+cos2θ=1②且θ為鈍角,聯(lián)立①②求得cosθ=-.【題目點(diǎn)撥】本題主要考查平面向量的數(shù)量積定義和坐標(biāo)運(yùn)算、兩角和的正弦公式,意在考查學(xué)生的邏輯思維能力和基本運(yùn)算能力,屬于中檔題.13、65π【解題分析】

本題首先可以通過題意畫出圖像,然后通過三棱錐的圖像性質(zhì)以及三棱錐的外接球的相關(guān)性質(zhì)來確定圓心的位置,最后根據(jù)各邊所滿足的幾何關(guān)系列出算式,即可得出結(jié)果。【題目詳解】如圖所示,作AB中點(diǎn)D,連接PD、CD,在CD上作三角形ABC的中心E,過點(diǎn)E作平面ABC的垂線,在垂線上取一點(diǎn)O,使得PO=OC。因?yàn)槿忮F底面是一個邊長為23的等邊三角形,E所以三棱錐的外接球的球心在過點(diǎn)E的平面ABC的垂線上,因?yàn)镻O=OC,P、C兩點(diǎn)在三棱錐的外接球的球面上,所以O(shè)點(diǎn)即為球心,因?yàn)槠矫鍼AB⊥平面ABC,PA=PB,D為AB中點(diǎn),所以PD⊥平面ABCCD=CA2-ADPD=P設(shè)球的半徑為r,則有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面積為S=4πr【題目點(diǎn)撥】本題考查三棱錐的相關(guān)性質(zhì),主要考查三棱錐的外接球的相關(guān)性質(zhì),考查如何通過三棱錐的幾何特征來確定三棱錐的外接球與半徑,考查推理能力,考查化歸與轉(zhuǎn)化思想,是難題。14、【解題分析】

運(yùn)用指數(shù)方程的解法,結(jié)合指數(shù)函數(shù)的值域,可得所求解.【題目詳解】由,即,因,解得,即.故答案:.【題目點(diǎn)撥】本題考查指數(shù)方程的解法,以及指數(shù)函數(shù)的值域,考查運(yùn)算能力,屬于基礎(chǔ)題.15、【解題分析】

利用兩個數(shù)的商是正數(shù)等價于兩個數(shù)同號;將已知的分式不等式轉(zhuǎn)化為整式不等式,求出解集.【題目詳解】同解于解得或故答案為:【題目點(diǎn)撥】本題考查解分式不等式,利用等價變形轉(zhuǎn)化為整式不等式是解題的關(guān)鍵.16、.【解題分析】

設(shè)等差數(shù)列的公差為,根據(jù)題中條件建立、的方程組,求出、的值,即可求出的值.【題目詳解】設(shè)等差數(shù)列的公差為,所以,解得,因此,,故答案為:.【題目點(diǎn)撥】本題考查等差數(shù)列的項(xiàng)的計(jì)算,常利用首項(xiàng)和公差建立方程組,結(jié)合通項(xiàng)公式以及求和公式進(jìn)行計(jì)算,考查方程思想,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解題分析】

(Ⅰ)利用余弦定理,解得的長;(Ⅱ)利用正弦定理得,計(jì)算得,,再利用為直角三角形,進(jìn)而可計(jì)算的長.【題目詳解】(Ⅰ)在中,由余弦定理有,即,解得或(舍),所以.(Ⅱ)由(Ⅰ)得,在中,由正弦定理有,得,,所以,,又,則為直角三角形,所以,即,故.【題目點(diǎn)撥】本題考查余弦定理和正弦定理的簡單應(yīng)用,屬于基礎(chǔ)題.18、(1)見證明;(2)【解題分析】

(1)取的中點(diǎn),連接,通過證明四邊形是平行四邊形,證得,從而證得平面.(2)連接,證得為與平面所成角.根據(jù)的值求得的長,作出二面角的平面角并證明,解直角三角形求得二面角的正切值.【題目詳解】(1)證明:取的中點(diǎn),連接.∵是中點(diǎn)∴又是的中點(diǎn),∴∴,從而四邊形是平行四邊形,故又平面,平面,∴(2)∵平面,∴是在平面內(nèi)的射影為與平面所成角,四邊形為矩形,∵,∴,∴過點(diǎn)作交的延長線于,連接,∵平面據(jù)三垂線定理知.∴是二面角的平面角易知道為等腰直角三角形,∴∴=∴二面角的正切值為【題目點(diǎn)撥】本小題主要考查線面平行的證明,考查線面角的定義和應(yīng)用,考查面面角的正切值的求法,考查邏輯推理能力和空間想象能力,屬于中檔題.19、(1)見解析;(2)見解析.【解題分析】

(1)將代入函數(shù)的解析式,利用函數(shù)的奇偶性定義來證明出函數(shù)的奇偶性;(2)將函數(shù)的解析式化為,然后利用函數(shù)單調(diào)性的定義證明出函數(shù)在上的單調(diào)性.【題目詳解】(1)當(dāng)時,,函數(shù)為上的奇函數(shù).證明如下:,其定義域?yàn)?,則,故函數(shù)為奇函數(shù);(2)當(dāng)時,函數(shù)在上單調(diào)遞減.證明如下:,任取,則,又由,則,則有,即.因此,函數(shù)為上的減函數(shù).【題目點(diǎn)撥】本題考查函數(shù)單調(diào)性與奇偶性的判定與證明,在利用定義證明函數(shù)的單調(diào)性與奇偶性時,要熟悉定義法證明函數(shù)奇偶性與單調(diào)性的基本步驟,考查邏輯推理能力與計(jì)算能力,屬于中等題.20、(1);(2)【解題分析】試題分析:(1)求出三棱錐的棱長為,即可求出三棱錐的表面積與正方體表面積的比值;(2)利用割補(bǔ)法,即可求出三棱錐的體積.試題解析:(1)正方體的棱長為,則三棱錐的棱長為,表面積為,正方體表面積為,∴三棱錐的表面積與正方體表面積的比值為(2)三棱錐的體積為21、(1),(2)【解題分析】

(1)根據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論