![分析力學(xué)思考題解答_第1頁](http://file4.renrendoc.com/view11/M03/21/11/wKhkGWWpvjmAcCK3AAM2yKmXzXo766.jpg)
![分析力學(xué)思考題解答_第2頁](http://file4.renrendoc.com/view11/M03/21/11/wKhkGWWpvjmAcCK3AAM2yKmXzXo7662.jpg)
![分析力學(xué)思考題解答_第3頁](http://file4.renrendoc.com/view11/M03/21/11/wKhkGWWpvjmAcCK3AAM2yKmXzXo7663.jpg)
![分析力學(xué)思考題解答_第4頁](http://file4.renrendoc.com/view11/M03/21/11/wKhkGWWpvjmAcCK3AAM2yKmXzXo7664.jpg)
![分析力學(xué)思考題解答_第5頁](http://file4.renrendoc.com/view11/M03/21/11/wKhkGWWpvjmAcCK3AAM2yKmXzXo7665.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第五章思考題5.1虛功原理中的“虛功”二字作何解釋?用虛功原理理解平衡問題,有何優(yōu)點(diǎn)和缺點(diǎn)?答:作.用于質(zhì)點(diǎn)上的力在任意虛位移中做的功即為虛功,而虛位移是假想的、符合約束的、無限小的.即時(shí)位置變更,故虛功也是假想的、符合約束的、無限小的.且與過程無關(guān)的功,它與真實(shí)的功完全是兩回事.從可知:虛功與選用的坐標(biāo)系無關(guān),這正是虛功與過程無關(guān)的反映;虛功對(duì)各虛位移中的功是線性迭加,虛功對(duì)應(yīng)于虛位移的一次變分.在虛功的計(jì)算中應(yīng)注意:在任意虛過程中假定隔離保持不變,這是虛位移無限小性的結(jié)果.虛功原理給出受約束質(zhì)點(diǎn)系的平衡條件,比靜力學(xué)給出的剛體平衡條件有更普遍的意義;再者,考慮到非慣性系中慣性力的虛功,利用虛功原理還可解決動(dòng)力學(xué)問題,這是剛體力學(xué)的平衡條件無法比擬的;另外,利用虛功原理解理想約束下的質(zhì)點(diǎn)系的平衡問題時(shí),由于約束反力自動(dòng)消去,可簡(jiǎn)便地球的平衡條件;最后又有廣義坐標(biāo)和廣義力的引入得到廣義虛位移原理,使之在非純力學(xué)體系也能應(yīng)用,增加了其普適性及使用過程中的靈活性.由于虛功方程中不含約束反力.故不能求出約束反力,這是虛功原理的缺點(diǎn).但利用虛功原理并不是不能求出約束反力,一般如下兩種方法:當(dāng)剛體受到的主動(dòng)力為已知時(shí),解除某約束或某一方向的約束代之以約束反力;再者,利用拉格朗日方程未定乘數(shù)法,景觀比較麻煩,但能同時(shí)求出平衡條件和約束反力.5.2為什么在拉格朗日方程中,不包含約束反作用力?又廣義坐標(biāo)與廣義力的含義如何?我們根據(jù)什么關(guān)系由一個(gè)量的量綱定出另一個(gè)量的量綱?答因拉格朗日方程是從虛功原理推出的,而徐公原理只適用于具有理想約束的力學(xué)體系虛功方程中不含約束反力,故拉格朗日方程也只適用于具有理想約束下的力學(xué)體系,不含約束力;再者拉格朗日方程是從力學(xué)體系動(dòng)能改變的觀點(diǎn)討論體系的運(yùn)動(dòng),而約束反作用力不能改變體系的動(dòng)能,故不含約束反作用力,最后,幾何約束下的力學(xué)體系其廣義坐標(biāo)數(shù)等于體系的自由度數(shù),而幾何約束限制力學(xué)體系的自由運(yùn)動(dòng),使其自由度減小,這表明約束反作用力不對(duì)應(yīng)有獨(dú)立的廣義坐標(biāo),故不含約束反作用力.這里討論的是完整系的拉格朗日方程,對(duì)受有幾何約束的力學(xué)體系既非完整系,則必須借助拉格朗日未定乘數(shù)法對(duì)拉格朗日方程進(jìn)行修正.廣義坐標(biāo)市確定質(zhì)點(diǎn)或質(zhì)點(diǎn)系完整的獨(dú)立坐標(biāo),它不一定是長(zhǎng)度,可以是角度或其他物理量,如面積、體積、電極化強(qiáng)度、磁化強(qiáng)度等.顯然廣義坐標(biāo)不一定是長(zhǎng)度的量綱.在完整約束下,廣義坐標(biāo)數(shù)等于力學(xué)體系的自由度數(shù);廣義力明威力實(shí)際上不一定有力的量綱可以是力也可以是力矩或其他物理量,如壓強(qiáng)、場(chǎng)強(qiáng)等等,廣義力還可以理解為;若讓廣義力對(duì)應(yīng)的廣義坐標(biāo)作單位值的改變,且其余廣義坐標(biāo)不變,則廣義力的數(shù)值等于外力的功由知,有功的量綱,據(jù)此關(guān)系已知其中一個(gè)量的量綱則可得到另一個(gè)量的量綱.若是長(zhǎng)度,則一定是力,若是力矩,則一定是角度,若是體積,則一定是壓強(qiáng)等.5.3廣義動(dòng)量和廣義速度是不是只相差一個(gè)乘數(shù)?為什么比更富有意義?答與不一定只相差一個(gè)常數(shù),這要由問題的性質(zhì)、坐標(biāo)系的選取形式及廣義坐標(biāo)的選用而定。直角坐標(biāo)系中質(zhì)點(diǎn)的運(yùn)動(dòng)動(dòng)能,若取為廣義坐標(biāo),則,而,相差一常數(shù),如定軸轉(zhuǎn)動(dòng)的剛體的動(dòng)能,取廣義坐標(biāo),而與相差一常數(shù)——轉(zhuǎn)動(dòng)慣量,又如極坐標(biāo)系表示質(zhì)點(diǎn)的運(yùn)動(dòng)動(dòng)能,若取,有,而,二者相差一變數(shù);若取有,而,二者相差一變數(shù).在自然坐標(biāo)系中,取,有,而,二者相差一變數(shù).從以上各例可看出:只有在廣義坐標(biāo)為長(zhǎng)度的情況下,與才相差一常數(shù);在廣義坐標(biāo)為角量的情形下,與相差為轉(zhuǎn)動(dòng)慣量的量綱.為何比更富有物理意義呢?首先,對(duì)應(yīng)于動(dòng)力學(xué)量,他建立了系統(tǒng)的狀態(tài)函數(shù)、或與廣義速度、廣義坐標(biāo)的聯(lián)系,它的變化可直接反應(yīng)系統(tǒng)狀態(tài)的改變,而是對(duì)應(yīng)于運(yùn)動(dòng)學(xué)量,不可直接反應(yīng)系統(tǒng)的動(dòng)力學(xué)特征;再者,系統(tǒng)地拉格朗日函數(shù)中不含某一廣義坐標(biāo)時(shí),對(duì)應(yīng)的廣義動(dòng)量常數(shù),存在一循環(huán)積分,給解決問題帶來方便,而此時(shí)循環(huán)坐標(biāo)對(duì)應(yīng)的廣義速度并不一定是常數(shù),如平方反比引力場(chǎng)中,不含,故有常數(shù),但常數(shù);最后,由哈密頓正則方程知,是一組正則變量:哈密頓函數(shù)中不含某個(gè)廣義坐標(biāo)時(shí),對(duì)應(yīng)的廣義動(dòng)量常數(shù),不含某個(gè)廣義動(dòng)量時(shí),對(duì)應(yīng)的廣義坐標(biāo)常數(shù)5.4既然是廣義動(dòng)量,那么根據(jù)動(dòng)量定理,是否應(yīng)等于廣義力?為什么在拉格朗日方程式中多出了項(xiàng)?你能說出它的物理意義和所代表的物理量嗎?答:包含廣義力的一部分。稱為拉格朗日力,才是。亦稱為廣義慣性力,廣義力才等于廣義力。5.5為什么在拉格朗日方程只適用于完整系?如為不完整系,能否由式得出式?答只有對(duì)于完整系,廣義坐標(biāo)數(shù)等于自由度數(shù),才能消去所有的約束方程,式(5.3.13)各才能全部相互獨(dú)立,得到式(5.3.14),故拉格朗日方程只適用于完整系,非完整力學(xué)體系,描述體系的運(yùn)動(dòng)需要的廣義坐標(biāo)多于自由度數(shù),各不全部獨(dú)立,不能得到(5.3.14)式,但(5.3.13)式結(jié)合拉格朗日方程未定乘數(shù)法可用于非完整系。5.6平衡位置附近的小振動(dòng)的性質(zhì),由什么來決定?為什么2個(gè)常數(shù)只有2個(gè)是獨(dú)立的?答力學(xué)體系在平衡位置附近的動(dòng)力學(xué)方程(5.4.4)得久期方程(本征值方程)(5.4.6)式,其中,久期方程的各根(本征值)的性質(zhì)決定體系平衡位置附近的小振動(dòng)性質(zhì)。因從本征方程(5.4.6)式中可求出個(gè)的本征值(),每一個(gè)對(duì)應(yīng)一個(gè)獨(dú)立的常數(shù)故個(gè)常數(shù)中只有個(gè)是獨(dú)立的。5.7什么叫簡(jiǎn)正坐標(biāo)?怎樣去找?它的數(shù)目和力學(xué)體系的自由度之間有何關(guān)系又每一簡(jiǎn)正坐標(biāo)將作怎樣的運(yùn)動(dòng)?答多自由度體系的小振動(dòng),每一廣義坐標(biāo)對(duì)應(yīng)于個(gè)主頻率的諧振動(dòng)的疊加。若通過坐標(biāo)間線性變換使得每一廣義坐標(biāo)僅對(duì)應(yīng)一個(gè)頻率的振動(dòng),則變換后的坐標(biāo)稱之為簡(jiǎn)正坐標(biāo),對(duì)應(yīng)的頻率為簡(jiǎn)正頻率,每一簡(jiǎn)正坐標(biāo)對(duì)應(yīng)一個(gè)簡(jiǎn)正頻率,而簡(jiǎn)正頻率數(shù)和力學(xué)體系的自由度數(shù)相等,故簡(jiǎn)正坐標(biāo)數(shù)等于自由度數(shù)。值得說的是,每一簡(jiǎn)正振動(dòng)為整個(gè)力學(xué)體系所共有,反映的是各質(zhì)點(diǎn)(整體)的振動(dòng)之一,其他坐標(biāo)都作為簡(jiǎn)正坐標(biāo)的線性函數(shù),由個(gè)簡(jiǎn)正振動(dòng)疊加而成。這種方法在統(tǒng)計(jì)物理,固體物理中都有運(yùn)用。5.8多自由度力學(xué)體系如果還有阻尼力,那么它們?cè)谄胶馕恢酶浇倪\(yùn)動(dòng)和無阻尼時(shí)有何不同?能否列出它們的微分方程?答對(duì)一完整的穩(wěn)定的力學(xué)體系在有阻尼的情況下,它們?cè)谄胶馕恢酶浇鼘⒆魉p運(yùn)動(dòng)。引入耗散函數(shù)則阻力力學(xué)體系的運(yùn)動(dòng)方程改為其中,,中是的函數(shù),把在平衡位形區(qū)域展開成泰勒級(jí)數(shù)高級(jí)項(xiàng)很小,只保留頭一項(xiàng),則均為常數(shù)。代入運(yùn)動(dòng)方程得把代入上式得本征值方程在,的小阻尼情況下,本征值,且振動(dòng)方程為顯然是按指數(shù)率的衰減振動(dòng)。5.9和有何區(qū)別?和有何區(qū)別?答:因,故由解得所以則而5.10哈密頓正則方程能適用于不完整系嗎?為什么?能適用于非保守系嗎?為什么?答:拉格朗日方程只適用于完整系,哈密頓正則方程有保守系拉格朗日方程推出,故只能適用于完整的,保守的力學(xué)體系,對(duì)非保守體系(5.3.18)改寫為其中為非有勢(shì)力,或?qū)憺榧础=?jīng)勒讓德變換后用課本上同樣的方法可推得非保守系中的哈密頓正則方程5.11哈密頓函數(shù)在什么情況下是整數(shù)?在什么情況下是總能量?試祥加討論,有無是總能量而不為常數(shù)的情況?答:若哈密頓函數(shù)不顯含時(shí)間,則;對(duì)穩(wěn)定約束下的力學(xué)體系,動(dòng)能不是速度的二次齊次函數(shù),則,是以哈密頓正則變量表示的廣義總能量,因不穩(wěn)定約束的約束范例可以做功,但拉格朗日方程中不含約束力,故有此差異,此時(shí)并不是真正的能量;對(duì)穩(wěn)定的,保守的力學(xué)體系,若含則是能量但不為常熟。5.12何謂泊松括號(hào)與泊松定理?泊松定理在實(shí)際上的功用如何?答:泊松括號(hào)是一種縮寫符號(hào),它表示已同一組正則變量為自變量的二函數(shù)之間的關(guān)系。若,則是物理學(xué)中最常用的泊松括號(hào),用泊松括號(hào)可表示力學(xué)體系的運(yùn)動(dòng)正則方程用泊松括號(hào)的性質(zhì)復(fù)雜微分運(yùn)算問題化為簡(jiǎn)單的括號(hào)運(yùn)算,這種表示法在量子力學(xué),量子場(chǎng)論等課程中被廣泛應(yīng)用。每一正則方程必對(duì)應(yīng)一個(gè)運(yùn)動(dòng)積分,利用泊松括號(hào)從正則方程=積分可以推出另外一個(gè)積分,這一關(guān)系稱為泊松定理。5.13哈密頓原理是用什么方法運(yùn)動(dòng)規(guī)律的?為什么變分符號(hào)可置于積分號(hào)內(nèi)也可移到積分號(hào)外?又全變分符號(hào)能否這樣?答:哈密頓原理是用變分的方法確定運(yùn)動(dòng)規(guī)律的,它是力學(xué)變分原理的積分形式?;舅枷胧窃诿枋隽W(xué)體系的維空間中,用變分求極值的方法,從許多條端點(diǎn)相同的曲線中挑選一條真是軌道確定體系的運(yùn)動(dòng)變化規(guī)律。因?yàn)閷?duì)等時(shí)變分,故變分符號(hào)可置于積分號(hào)內(nèi)也可置于積分號(hào)外,而不等時(shí)變分,故全變分符號(hào)不能這樣。5.14正則變換的目的及功用何在?又正則變換的關(guān)鍵何在?答:力學(xué)體系的哈密頓函數(shù)中是否有循環(huán)坐標(biāo)系或循環(huán)坐標(biāo)的數(shù)目與坐標(biāo)系(或參變數(shù))的選取有關(guān),故在正則方程形式不變的前提下,通過某種變數(shù)變換找到新的函數(shù),使之多出現(xiàn)一些循環(huán)坐標(biāo),此即正則變換的目的及公用。由于每一循環(huán)坐標(biāo)對(duì)應(yīng)一個(gè)運(yùn)動(dòng)積分,正則變換后可多得到一些運(yùn)動(dòng)積分,給解決問題帶來方便,正則變換的關(guān)鍵是母函數(shù)的選取,其選取的原則是使中多出現(xiàn)循環(huán)坐標(biāo),但并無一定的規(guī)律可循,要具體問題具體分析。5.15哈密頓-雅可比理論的目的何在?試簡(jiǎn)述次理論解題時(shí)所應(yīng)用的步驟.答:哈密頓正則方程是個(gè)一階微分方程的方程組,用泊松定理解之,由而已知運(yùn)動(dòng)積分求出其余的運(yùn)動(dòng)積分往往是已知解的線性組合或橫等時(shí),并不能給出新的解;而用正則變換可多得到一些循環(huán)坐標(biāo)是正則方程立即有解,但母函數(shù)的選取往往很困難,哈密頓—雅可畢理論的目的既是要彌補(bǔ)上述缺陷,通過一個(gè)特殊的正則變換,使得用新變量表示的哈密頓函數(shù),此時(shí)全部為常數(shù),這樣哈密頓得主函數(shù)極為母函數(shù),從而解決母函數(shù)難以尋找的困難。5.16正則方程與及之間關(guān)系如何?我們能否用一正則變換由前者得出后者?答:對(duì)(5.9.8)式若為不穩(wěn)定約束,只需以代替即可,故對(duì)(5.9.8)式分離變量后推出的(5.9.12)中也只需以代即可用于不穩(wěn)定約束。正則方程利用哈—雅理論后得到結(jié)果十分普遍,可同時(shí)得出運(yùn)動(dòng)規(guī)律,軌道級(jí)動(dòng)量,故比拉格朗日方程優(yōu)越。5.17在研究機(jī)械運(yùn)動(dòng)的力學(xué)中,劉維定理能否發(fā)揮作用?何故?5.18分析力學(xué)學(xué)完后,請(qǐng)把本章中的方程和原理與牛頓運(yùn)動(dòng)定律相比較,并加以評(píng)價(jià).經(jīng)典“牛頓力學(xué)”常用于幾何的觀點(diǎn),運(yùn)用形象化思維的方式,研究力學(xué)體系的受力情況及運(yùn)動(dòng)情況,然后通過運(yùn)動(dòng)非常及時(shí)物體的受力與運(yùn)動(dòng)變化間的相互聯(lián)系和前因后果。這種方法形象,直觀,物理意義鮮明,被廣泛應(yīng)用于工程實(shí)際。但由于它著眼于力,速度,加速度等矢量,給解決復(fù)雜的力學(xué)體系的運(yùn)動(dòng)問題帶來許多不便;再者,它僅僅局限于純力學(xué)體系的運(yùn)動(dòng)分析,其理論與方法難以建立與其它學(xué)科的聯(lián)系。十八,十九實(shí)際發(fā)展起來的“分析力學(xué)‘方法彌補(bǔ)了上述缺陷,它用純數(shù)學(xué)分析的方法用更具有概括性的抽象思維方式,從力學(xué)體系的一切可能的運(yùn)動(dòng)中挑選出實(shí)際運(yùn)動(dòng)的規(guī)律。這種方法盡管物理意義不如牛頓力學(xué)方法鮮明,但它給人們解決復(fù)雜力學(xué)體系的運(yùn)動(dòng)問題提供了有一方法;再者,由于廣義坐標(biāo),廣義力的引入使其理論在其它學(xué)科中也能廣泛的應(yīng)用。建立了經(jīng)典物理學(xué)向近代物理學(xué)過渡的橋梁。下面通過分析力學(xué)與牛頓力學(xué)理論及方法的比較扼要闡述分析力學(xué)的優(yōu)越性。牛頓力學(xué)的著眼點(diǎn)是力,實(shí)際力學(xué)體系除受到促使其運(yùn)動(dòng)狀態(tài)改變的主動(dòng)力,往往還存在很多限制其運(yùn)動(dòng)的約束條件體現(xiàn)這些約束的約束反作用力都要作為未知數(shù)出現(xiàn)于運(yùn)動(dòng)微分方程,使未知量增加給解算帶來許多麻煩;分析力學(xué)著眼于功和能在一定條件下,常??梢圆豢紤]約束反作用力。如在理想條件下,用虛位移原理解決力學(xué)體系的平衡問題可撇開眾多的未知未知約束力,直接得出平衡條件,比用牛頓力學(xué)中剛體受力的平衡方程方便得多;達(dá)朗伯——虛位移原理解決力學(xué)體系的動(dòng)力學(xué)問題,由于虛功的概念、廣義坐標(biāo)的引入,也可撇開約束力得解,比用牛頓方程即由此推出的動(dòng)量定理,動(dòng)量矩定理方便;拉格朗日方程、哈密頓原理即由此得到的分析力學(xué)一系列方程均具這一優(yōu)點(diǎn)。從一分為二的觀點(diǎn)來看,這也是分析力學(xué)的缺點(diǎn)——不能求出約束反作用力。當(dāng)把待求的約束反力或做功的約束反力作為主動(dòng)力來看,分析力學(xué)的理論修改后仍能應(yīng)用。牛頓力學(xué)用矢量的方法研究力學(xué)體系的運(yùn)動(dòng),著眼于力、加速度、速度等矢量,而矢量具有方向性、相對(duì)性,在坐標(biāo)變換中很費(fèi)事,故牛頓力學(xué)的動(dòng)力學(xué)方程都與參考系極坐標(biāo)系的選取有關(guān);分析力學(xué)用標(biāo)量描述力學(xué)體系的運(yùn)動(dòng)及變化規(guī)律,著眼于功和能廣義坐標(biāo)和廣義速度等一系列標(biāo)量,標(biāo)量便于變換及疊加,標(biāo)量形式的運(yùn)動(dòng)方程也是便于寫出的,且由于廣義坐標(biāo)和廣義力的引入,是指超出立憲的范圍也能應(yīng)用,給參變量的選用也帶來了許多方便,提高了靈活性。如用拉格朗日方程,哈密頓原理或哈密頓正則方程推證極坐標(biāo)系,球坐標(biāo)系的質(zhì)點(diǎn)運(yùn)動(dòng)方程,比用牛頓力學(xué)的方法簡(jiǎn)便,但分析力學(xué)不如牛頓力學(xué)方法直觀物理意義也不如牛頓力學(xué)方法清晰。牛頓力學(xué)的動(dòng)量守恒定律動(dòng)量矩守恒定律總是以牛頓第三定律為先決條件的;而分析力學(xué)中循環(huán)坐標(biāo)對(duì)應(yīng)的廣義動(dòng)量守恒原理并不以牛頓第三定律為先決條件,其先決條件是拉格朗日函數(shù)或哈密頓函數(shù)中不含某廣義坐標(biāo)。若拉格朗日函數(shù)中不含某廣義坐標(biāo),則對(duì)應(yīng)于拉格朗日動(dòng)力學(xué)的廣義動(dòng)量守恒;若哈密頓函數(shù)中不含某廣義坐標(biāo),則對(duì)應(yīng)于哈密頓動(dòng)力學(xué)的廣義動(dòng)量守恒。牛頓動(dòng)力學(xué)的動(dòng)量守恒定律,動(dòng)量矩守恒定律都是廣義動(dòng)量守恒原理對(duì)應(yīng)的某循環(huán)坐標(biāo)下的特例。恩西力學(xué)的理論更具有概括性,廣義動(dòng)量守恒原理具有更普遍的意義。牛頓力學(xué)研究力學(xué)問題也用到共和能的概念,但其功能關(guān)系動(dòng)能定理,功能原理,機(jī)械能守恒定律等,只不過提供了力學(xué)體系運(yùn)動(dòng)的某一方面特征,它的注意力集中于實(shí)際實(shí)現(xiàn),而在實(shí)際實(shí)現(xiàn)的運(yùn)動(dòng)中,功能關(guān)系只能給出一個(gè)獨(dú)立的方程不能提供完全的解;分析力學(xué)則不然,它不只是注意實(shí)際實(shí)現(xiàn)的運(yùn)動(dòng),而是以力學(xué)體系的一切可能存在的運(yùn)動(dòng)中挑選出真實(shí)的運(yùn)動(dòng),故分析力學(xué)中的功能關(guān)系指的是一切可能出現(xiàn)的運(yùn)動(dòng)中的功能關(guān)系,比實(shí)際實(shí)現(xiàn)的運(yùn)動(dòng)中的功能關(guān)系要豐富的多,它可以給出一組與力學(xué)體系自由度數(shù)相等的運(yùn)動(dòng)方程,足以確定體系的運(yùn)動(dòng)。如用牛頓力學(xué)中的功能關(guān)系——機(jī)械能守恒定律研究拋體運(yùn)動(dòng)(不計(jì)空氣阻力),只能給出一個(gè)獨(dú)立的方程,不能提供完全的解;而用拉格朗日方程則可以給出與自由度數(shù)相等的兩個(gè)獨(dú)立的運(yùn)動(dòng)方程,足以解決其運(yùn)動(dòng)。牛頓力學(xué)機(jī)械能守恒定律中的勢(shì)能對(duì)應(yīng)于所有的勢(shì)力,包括主動(dòng)力和約束反力,而分析力學(xué)中的拉格朗日函數(shù)或哈密頓函數(shù)中的勢(shì)能只對(duì)應(yīng)于廣義力,廣義力只包含主動(dòng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度教育科技合伙人退伙合同模板
- 二零二五年度房地產(chǎn)項(xiàng)目資金代管代收代付服務(wù)合同
- 2025年度離婚夫妻共同子女法律權(quán)益保護(hù)協(xié)議
- 施工總體籌劃
- 施工日志填寫樣本施工過程中的質(zhì)量問題與整改記錄
- 打造高效、智能的辦公環(huán)境-基于工業(yè)互聯(lián)網(wǎng)平臺(tái)的實(shí)踐研究
- 深度探討學(xué)術(shù)研究匯報(bào)的要點(diǎn)與制作技巧
- 業(yè)績(jī)達(dá)標(biāo)股票期權(quán)合同范本
- 產(chǎn)品分銷合作合同書
- 萬科地產(chǎn)集團(tuán):合同管理新篇章
- 2024年海南省公務(wù)員錄用考試《行測(cè)》真題卷及答案解析
- 2025年中國(guó)汽車車燈行業(yè)市場(chǎng)現(xiàn)狀、前景分析研究報(bào)告(智研咨詢發(fā)布)
- 2024夏季廣東廣州期貨交易所招聘高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 浙江省2024年高考化學(xué)模擬試題(含答案)2
- 2024新人教七年級(jí)英語上冊(cè) Unit 2 Were Family!(大單元教學(xué)設(shè)計(jì))
- (部編版)統(tǒng)編版小學(xué)語文教材目錄(一至六年級(jí)上冊(cè)下冊(cè)齊全)
- 材料力學(xué)之材料疲勞分析算法:S-N曲線法:疲勞分析案例研究與項(xiàng)目實(shí)踐.Tex.header
- 2024(新高考2卷)英語試題詳解解析 課件
- 天津2024年天津市規(guī)劃和自然資源局所屬事業(yè)單位招聘筆試歷年典型考題及考點(diǎn)附答案解析
- 中國(guó)醫(yī)美行業(yè)2024年度洞悉報(bào)告-德勤x艾爾建-202406
- 2024年江蘇經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)一套
評(píng)論
0/150
提交評(píng)論