新疆兵團第二師華山中學2023年高一數(shù)學第一學期期末統(tǒng)考試題含解析_第1頁
新疆兵團第二師華山中學2023年高一數(shù)學第一學期期末統(tǒng)考試題含解析_第2頁
新疆兵團第二師華山中學2023年高一數(shù)學第一學期期末統(tǒng)考試題含解析_第3頁
新疆兵團第二師華山中學2023年高一數(shù)學第一學期期末統(tǒng)考試題含解析_第4頁
新疆兵團第二師華山中學2023年高一數(shù)學第一學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

新疆兵團第二師華山中學2023年高一數(shù)學第一學期期末統(tǒng)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.“0≤a≤1”是“關(guān)于x的不等式x2-2ax+a>0對x∈R恒成立A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.化簡:A.1 B.C. D.23.某單位共有名職工,其中不到歲的有人,歲的有人,歲及以上的有人,現(xiàn)用分層抽樣的方法,從中抽出名職工了解他們的健康情況.如果已知歲的職工抽取了人,則歲及以上的職工抽取的人數(shù)為()A. B.C. D.4.直線l1的傾斜角,直線l1⊥l2,則直線l2的斜率為A.- B.C.- D.5.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.沿軸向左平移個單位 B.沿軸向右平移個單位C.沿軸向左平移個單位 D.沿軸向右平移個單位6.已知三棱錐D-ABC中,AB=BC=1,AD=2,BD=,AC=,BC⊥AD,則該三棱錐的外接球的表面積為()A.π B.6πC.5π D.8π7.已知定義在R上的函數(shù)滿足:對任意,則A. B.0C.1 D.38.定義域在R上的函數(shù)是奇函數(shù)且,當時,,則的值為()A. B.C D.9.已知冪函數(shù)的圖象過點,則A. B.C.1 D.210.已知函數(shù)是定義在上的偶函數(shù),且在上是減函數(shù),若,,,則,,的大小關(guān)系為()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.已知向量不共線,,若,則___12.已知函數(shù),則函數(shù)的零點個數(shù)為__________13.已知函數(shù)的圖像恒過定點,若點也在函數(shù)的圖像上,則__________14.函數(shù)是冪函數(shù)且為偶函數(shù),則m的值為_________15.若角的終邊與角的終邊相同,則在內(nèi)與角的終邊相同的角是______三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.已知向量m=(cos,sin),n=(2+sinx,2-cos),函數(shù)=m·n,x∈R.(1)求函數(shù)的最大值;(2)若且=1,求的值.17.目前全球新冠疫情嚴重,核酸檢測結(jié)果成為是否感染新型冠狀病毒的重要依據(jù),某核酸檢測機構(gòu),為了快速及時地進行核酸檢測,花費36萬元購進核酸檢測設(shè)備.若該設(shè)備預(yù)計從第1個月到第個月的檢測費用和設(shè)備維護費用總計為萬元,該設(shè)備每月檢測收入為20萬元.(1)該設(shè)備投入使用后,從第幾個月開始盈利?(即總收入減去成本及所有支出費用之差為正值);(2)若該設(shè)備使用若干月后,處理方案有兩種:①月平均盈利達到最大值時,以20萬元價格賣出;②盈利總額達到最大值時,以16萬元的價格賣出.哪一種方案較為合算?請說明理由.18.已知函數(shù).(1)求的周期和單調(diào)區(qū)間;(2)若,,求的值.19.某公司結(jié)合公司的實際情況針對調(diào)休安排展開問卷調(diào)查,提出了,,三種放假方案,調(diào)查結(jié)果如下:支持方案支持方案支持方案35歲以下20408035歲以上(含35歲)101040(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從“支持方案”的人中抽取了6人,求的值;(2)在“支持方案”的人中,用分層抽樣的方法抽取5人看作一個總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.20.已知函數(shù)(1)用定義證明函數(shù)在區(qū)間上單調(diào)遞增;(2)對任意都有成立,求實數(shù)的取值范圍21.函數(shù)(1)當時,求函數(shù)的值域;(2)當時,求函數(shù)的最小值

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、B【解析】先根據(jù)“關(guān)于x的不等式x2-2ax+a>0對x∈R恒成立”得0<a<1【詳解】設(shè)p:“關(guān)于x的不等式x2-2ax+a>0對x∈R恒成立則由p知一元二次函數(shù)y=x2-2ax+a的圖象開口向上,且所以對于一元二次方程x2-2ax+a=0必有解得0<a<1,由于0,1?所以“0≤a≤1”是“關(guān)于x的不等式x2-2ax+a>0對x∈R恒成立”故選:B.【點睛】結(jié)論點睛:本題考查充分不必要條件的判斷,一般可根據(jù)如下規(guī)則判斷:(1)若p是q的必要不充分條件,則q對應(yīng)集合是p對應(yīng)集合的真子集;(2)若p是q充分不必要條件,則p對應(yīng)集合是q對應(yīng)集合的真子集;(3)若p是q的充分必要條件,則p對應(yīng)集合與q對應(yīng)集合相等;(4)若p是q的既不充分又不必要條件,q對的集合與p對應(yīng)集合互不包含2、C【解析】根據(jù)二倍角公式以及兩角差的余弦公式進行化簡即可.【詳解】原式.故選C.【點睛】這個題目考查了二倍角公式的應(yīng)用,涉及兩角差的余弦公式以及特殊角的三角函數(shù)值的應(yīng)用屬于基礎(chǔ)題.3、A【解析】計算抽樣比例,求出不到35歲的應(yīng)抽取人數(shù),再求50歲及以上的應(yīng)抽取人數(shù).【詳解】計算抽樣比例為,所以不到35歲的應(yīng)抽取(人,所以50歲及以上的應(yīng)抽取(人.故選:.4、C【解析】由題意可得L2的傾斜角等于30°+90°=120°,從而得到L2的斜率為tan120°,運算求得結(jié)果【詳解】如圖:直線L1的傾斜角α1=30°,直線L1⊥L2,則L2的傾斜角等于30°+90°=120°,∴L2的斜率為tan120°=﹣tan60°,故選C【點睛】本題主要考查直線的傾斜角和斜率的關(guān)系,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想,屬于基礎(chǔ)題5、C【解析】利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論【詳解】,將函數(shù)的圖象沿軸向左平移個單位,即可得到函數(shù)的圖象,故選:C【點睛】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題6、B【解析】由題意結(jié)合平面幾何、線面垂直的判定與性質(zhì)可得BC⊥BD,AD⊥AC,再由平面幾何的知識即可得該幾何體外接球的球心及半徑,即可得解.【詳解】AB=BC=1,AD=2,BD=,AC=,∴,,∴DA⊥AB,AB⊥BC,由BC⊥AD可得BC⊥平面DAB,DA⊥平面ABC,∴BC⊥BD,AD⊥AC,∴CD=,由直角三角形的性質(zhì)可知,線段CD的中點O到點A,B,C,D的距離均為,∴該三棱錐外接球的半徑為,故三棱錐的外接球的表面積為4π=6π.故選:B.【點睛】本題考查了三棱錐幾何特征的應(yīng)用及其外接球表面積的求解,考查了運算求解能力與空間思維能力,屬于中檔題.7、B【解析】,且,又,,由此可得,,是周期為的函數(shù),,,故選B.考點:函數(shù)的奇偶性,周期性,對稱性,是對函數(shù)的基本性質(zhì)的考察.【易錯點晴】函數(shù)滿足則函數(shù)關(guān)于中心對稱,,則函數(shù)關(guān)于軸對稱,常用結(jié)論:若在上的函數(shù)滿足,則函數(shù)以為周期.本題中,利用此結(jié)論可得周期為,進而,需要回到本題利用題干條件賦值即可.8、A【解析】根據(jù)函數(shù)的奇偶性和周期性進行求解即可.【詳解】因為,所以函數(shù)的周期為,因為函數(shù)是奇函數(shù),當時,,所以,故選:A9、B【解析】先利用待定系數(shù)法求出冪函數(shù)的表達式,然后將代入求得的值.【詳解】設(shè),將點代入得,解得,則,所以,答案B.【點睛】主要考查冪函數(shù)解析式的求解以及函數(shù)值求解,屬于基礎(chǔ)題.10、B【解析】分析:利用函數(shù)的單調(diào)性即可判斷.詳解:因為函數(shù)為偶函數(shù)且在(?∞,0)上單調(diào)遞減,所以函數(shù)在(0,+∞)上單調(diào)遞增,由于,所以.故選B.點睛:對數(shù)函數(shù)值大小的比較一般有三種方法:①單調(diào)性法,在同底的情況下直接得到大小關(guān)系,若不同底,先化為同底.②中間值過渡法,即尋找中間數(shù)聯(lián)系要比較的兩個數(shù),一般是用“0”,“1”或其他特殊值進行“比較傳遞”.③圖象法,根據(jù)圖象觀察得出大小關(guān)系二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、【解析】由,將表示為的數(shù)乘,求出參數(shù)【詳解】因為向量不共線,,且,所以,即,解得【點睛】向量與共線,當且僅當有唯一一個實數(shù),使得12、3【解析】由,得,作出y=f(x),的圖象,由圖象可知共有3個交點,故函數(shù)的零點個數(shù)為3故答案為:313、1【解析】首先確定點A的坐標,然后求解函數(shù)的解析式,最后求解的值即可.【詳解】令可得,此時,據(jù)此可知點A的坐標為,點在函數(shù)的圖像上,故,解得:,函數(shù)的解析式為,則.【點睛】本題主要考查函數(shù)恒過定點問題,指數(shù)運算法則,對數(shù)運算法則等知識,意在考學生的轉(zhuǎn)化能力和計算求解能力.14、【解析】由函數(shù)是冪函數(shù),則,解出的值,再驗證函數(shù)是否為偶函數(shù),得出答案.【詳解】由函數(shù)是冪函數(shù),則,得或當時,函數(shù)不是偶函數(shù),所以舍去.當時,函數(shù)是偶函數(shù),滿足條件.故答案為:【點睛】本題考查冪函數(shù)的概念和冪函數(shù)的奇偶性,屬于基礎(chǔ)題.15、【解析】根據(jù)角的終邊與角的終邊相同,得到,再得到,然后由列式,根據(jù),可得整數(shù)的值,從而可得.【詳解】∵(),∴()依題意,得(),解得(),∴,∴在內(nèi)與角的終邊相同的角為故答案為【點睛】本題考查了終邊相同的角的表示,屬于基礎(chǔ)題.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1)f(x)的最大值是4(2)-【解析】(1)先由向量的數(shù)量積坐標表示得到函數(shù)的三角函數(shù)解析式,再將其化簡得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合條件的x的三角函數(shù)值,再有余弦的和角公式求的值【詳解】(1)因為f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因為f(x)=1,所以sin=.又因為x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【點睛】本題考查平面向量的綜合題17、(1)第4個月開始盈利(2)方案①較為合算,理由見解析【解析】(1)求出利潤表達式然后解不等式可得答案;(2)分別計算出兩種方案的利潤比較可得答案.【小問1詳解】由題意得,即,解得,∴.∴該設(shè)備從第4個月開始盈利.【小問2詳解】該設(shè)備若干月后,處理方案有兩種:①當月平均盈利達到最大值時,以20萬元的價格賣出,.當且僅當時,取等號,月平均盈利達到最大,∴方案①的利潤為:(萬元).②當盈利總額達到最大值時,以16萬元的價格賣出.,∴或時,盈利總額最大,∴方案②的利潤為20+16=36(萬元),∵38>36,∴方案①較為合算.18、(1)周期為,增區(qū)間為,減區(qū)間為;(2).【解析】(1)利用三角恒等變換思想可得出,利用周期公式可求出函數(shù)的周期,分別解不等式和,可得出該函數(shù)的增區(qū)間和減區(qū)間;(2)由可得出,利用同角三角函數(shù)的平方關(guān)系求出的值,然后利用兩角差的余弦公式可求出的值.詳解】(1),所以,函數(shù)的周期為,令,解得;令,解得.因此,函數(shù)的增區(qū)間為,減區(qū)間為;(2),,,,,.【點睛】本題考查正弦型函數(shù)周期和單調(diào)區(qū)間的求解,同時也考查了利用兩角差的余弦公式求值,考查運算求解能力,屬于中等題.19、(1)(2)【解析】(1)根據(jù)分層抽樣按比例抽取,列出方程,能求出n的值;(2)35歲以下有4人,35歲以上(含35歲)有1人.設(shè)將35歲以下的4人標記為1,2,3,4,35歲以上(含35歲)的1人記為a,利用列舉法能求出恰好有1人在35歲以上(含35歲)的概率.【詳解】(1)根據(jù)分層抽樣按比例抽取,得:,解得.(2)35歲以下:(人),35歲以上(含35歲):(人)設(shè)將35歲以下的4人標記為1,2,3,4,35歲以上(含35歲)的1人記為,,共10個樣本點.設(shè):恰好有1人在35歲以上(含35歲),有4個樣本點,故.【點睛】本題考查概率的求法,分層抽樣、古典概型、列舉法等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.20、(1)證明見解析(2)【解析】(1)由定義證明即可;(2)求出在上的最大值,即可得出實數(shù)的取值范圍小問1詳解】任取,且,因為,所以,所以,即.所以在上為單調(diào)遞增【小問2詳解】任意都有成立,即.由(1)知在上為增函數(shù),所以時,.所以實數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論