高等數(shù)學(xué)下袁建華lecture 8_第1頁
高等數(shù)學(xué)下袁建華lecture 8_第2頁
高等數(shù)學(xué)下袁建華lecture 8_第3頁
高等數(shù)學(xué)下袁建華lecture 8_第4頁
高等數(shù)學(xué)下袁建華lecture 8_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

AdvancedMathematics(II)SchoolofScience,BUPTJianhuaYuan

Section9.32FermatDifferentiationofMultivariableCompositeFunctionsandImplicitFunctionsJacobi,Jakob3PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsTheorem

arebothSupposethatandThenthecompositedifferentiableatthecorrespondingpointisalsodifferentiableatthepointfunctionisdifferentiableatthepointwhilethefunctionanditstotaldifferentialisandthenthefunctionsuandvhavecorrespondingincrementsProofLettheincrementsofthevariablesxandybeand4PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsProof(continued)SinceuandvarebothdifferentiableatSincefisdifferentiableatthewherepointcorresponding5PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsProof(continued)Then,wecomposethefunctionsuandvintothefunctionfandwhereNow,weneedonlyverifythattheaisahigher-orderinfinitesimalThatisw.r.t.ρ.6PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsProof(continued)NoticethatSinceThusthen,isbounded.Similarly,isalsobounded.Thisimpliestheresult.isbounded.7PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsBytheformulaweknowthatandMoregenerally,ifarebothdifferentiable,thenthecompositefunctionisalsodifferentiable,where8PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsUseadiagramtoshowtheprocessingtofindthepartialdifferentialsofmultivariablecompositefunctions.TheTreeofVariablesuv9PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsSolutionFindExampleLetwhereisdifferentiable.isdifferentiablebecauseThecompositefunctionThen,wehaveandarebothdifferentiable.1210PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsTherearevariousdifferentcasesformultivariablecompositefunctions.ThentheCase1Letallbedifferentiable.Thencompositefunctionisafunctionofonevariablewhichiscalledthetotalderivative

ofthecompositefunctionzwithrespecttox.wehave11PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsCase2ThentheLetbothbedifferentiable.isalsodifferentiable,havingonecompositefunctionThen,wehaveintermediatevariablesandthreeindependentvariable.12PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsExampleProvethatLetwhereisderivable.SolutionasacompositefunctionRegardthefunctionfunctioncomposedbyandDerivationwithrespecttoxandyrespectivelygivessothat13PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsCase3ThentheLetbothbedifferentiable.isalsodifferentiable,havingonecompositefunctionThen,wehaveintermediatevariablesandtwoindependentvariable.Remarkf:三元函數(shù),自變量為x,y,u;z:復(fù)合函數(shù),u是中間變量,x,y既是中間變量又是自變量14PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsExampleLetwherethesecondorderpartialderivativesIfofthefunctionfarecontinuouswithrespecttoeachvariable.findWehaveSolutionwehaveUsingwheref1andf2expressthepartialderivativesoffunctionfwithrespecttothefirstintermediatevariableandthesecondintermediatevariablerespectively.PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsExampleThesecondorderpartialderivativesf,garecontinuouswithrespecttoeachvariable,findand15findand16PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsExampleandTransformtheexpressionsintoexpressionsinthepolarcoordinatesystem,wherehascontinuoussecondorderpartialderivatives.SolutionsothatLetand17PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsSolution(continued)asacompositefunctionThus,wecanregardthefunctionandthefunctionswhichconsistsofthefunctionandBythechainrule,weobtainandwealsohave18PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsSolution(continued)Bysubstituting,wehaveThen19PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsSolution(continued)Tofindthesecondorderderivatives,wehaveSimilarly,wealsohavetheexpressionfor20PartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsSolution(continued)Thus,weobtainthat21InvarianceofthetotaldifferentialformBytherepresentationofthetotaldifferential,weseethatSincethenTheinvarianceoffirstorderdifferentialform22InvarianceofthetotaldifferentialformRationaloperationrulesfortotaldifferentialsExample

Find23RationaloperationrulesfortotaldifferentialsExampleisdifferentiable,findthepartialderivativesofIfthefunctionSolutionBytheinvarianceofthetotaldifferentialformwehavethen24DifferentiationofImplicitFunctions(隱函數(shù))DefinedByOneEquationForanequationifthereexistsafunctionofnvariablessuchthatwhenwesubstituteitintotheequation,theequationesanidentityiscalledanimplicitfunctiondeterminedbytheequation.thenDifferentiationofImplicitFunctionsDefinedByOneEquationTheorem(Existenceofimplicitfunctions隱函數(shù)存在定理)(2)BothpartialderivativesofthefunctionFarecontinuousinasatisfiestheconditions:Supposethatthefunction(3)Then(1)neighborhoodofthepointandina(1)Thereexistsoneandonlyonefunctionhasacontinuousderivativeinthe(2)Thefunctionsuchthatneighbourhoodofthepointandneighbourhood2526DifferentiationofImplicitFunctionsDefinedByOneEquationTheproofofthistheoremisbeyondthescopeofthisbook.Wejustwithacontinuousderivative.determinesaimplicitfunctiondeducetheformulaundertheassumptionthattheequationweobtainSubstitutingintoDifferentiatebothsidesoftheaboveidentityusingthechainrule,wehavethereexistsaneighbourhoodSinceiscontinuousandthussuchthatin27DifferentiationofImplicitFunctionsDefinedByOneEquationisdeterminedbySimilarly,ifthefunctionoftwovariablesinthreevariables,thenwehaveanequationDifferentiatebothsidesoftheaboveidentity,wehavesothatSupposethatthefunctionz=z(x,y)isdeterminedbytheequationFindthetotaldifferentialdzatthepoint(1,0,-1).28DifferentiationofImplicitFunctionsDefinedByOneEquationExampleSolution(I)UsingtheformulaforderivationSolution(II)Usingtheinvarianceofthetotaldifferentialform29DifferentiationofImplicitFunctionsDefinedByOneEquationSolutionObviously,allthefirstorderLethascontinuousfirstExampleSupposethatthefunctionisdeterminedbyorderpartialderivativesandthefunctionconstants.Findwherea,bandcarealltheequationexistandpartialderivativesofthecompositefunctionwehavearecontinuous.soLet30DifferentiationofImplicitFunctionsDefinedByMoreThanOneEquationConsiderthesystemoftwoequationsoffunctionsIngeneral,twooftheThesetwoequationscontainfourvariables.Iftheycandeterminetwovariablescanbedeterminedbytheothers.functionsoftwovariableswithcontinuouspartialderivativessothatDifferentiatebothsidesofaboveidentities,wehave31DifferentiationofImplicitFunctionsDefinedByMoreThanOneEquationThesetwoequationsformalinearalgebraicsystemforthetwounknownandquantitiesIfthedeterminantofcoefficientsthen,bytheCramer’srule,weobtainBythesameway,wehaveJacobi,Jakob(1804-1851)Germanmathematician32DifferentiationofImplicitFunctionsDefinedByMoreThanOneEquationExampleFindthepartialderivativesoftheimplicitfunctionsdeterminedbytheequationsandSolution(I)Byformulasofderivativesoftheimplicitfunctions,ifweobtainSimilarly,wehaveand33DifferentiationofImplicitFunctionsDefinedByMoreThanOneEquationSolution(II)Findthetotaldifferentialstobothsidesoftheequations.wehaveWhileExampleFindthepartialderivativesoftheimplicitfunctionsdeterminedbytheequationsand34ReviewPartialDerivativesandTotalDifferentialsofMultivariableCompositeFunctionsDifferentiationofImplicitFunctionsDefinedByOneEquationDifferentiationofImplicitFunctionsDefinedByMoreThanOneEquation補(bǔ)充說明復(fù)合函數(shù)與非復(fù)合函數(shù)其中f:三元函數(shù),自變量為u,v,w;z:復(fù)合函數(shù),u,v,w是中間變量,x,y是自變量求偏導(dǎo)數(shù)時(shí)分清自變量和中間變量其中f的偏導(dǎo)數(shù):z的偏導(dǎo)數(shù):可以分別記為或?qū)χ虚g變量的導(dǎo)數(shù)對(duì)最終自變量的導(dǎo)數(shù)35補(bǔ)充說明f:三元函數(shù),自變量為u,x,y;z:復(fù)合函數(shù),u,是中間變量,x,y既是中間又是自變量求偏導(dǎo)數(shù)時(shí)分清自變量和中間變量其中f的偏導(dǎo)數(shù):可以分別記為或z的偏導(dǎo)數(shù):對(duì)中間變量的導(dǎo)數(shù)對(duì)最終自變量的導(dǎo)數(shù)不一定等于不一定等于36補(bǔ)充說明求偏導(dǎo)數(shù)時(shí)分清自變量和中間變量其中不一定等于不一定等于Exampleswhere

where37Section9.438FermatDerivativesandDifferentialsofVector-valuedFunctions39Vector-ValuedFunctionsJustaswedidforplanarcurvesbefore,totractaparticlemovinginspace,werunavectorrfromtheorigintotheparticleandstudythechangesinr.Iftheparticle’spositioncoordinatesaretwice-differentiablefunctionsoftime,thensoisr,andwecanfindtheparticle’svelocityandaccelerationvectorsatanytimebydifferentiatingr.Conversely,ifwehaveenoughinformationabouttheparticle’sinitialvelocityandposition,wecanfindrasafunctionoftimebyintegration.40SpaceCurvesWhenaparticlemovesthroughspaceduringatimeintervalI,wethinkoftheparticle’scoordinatesasfunctionsdefinedonI:makeupthecurveinspaceThepointsTheequationsandintervalinlastthatwecalltheparticle’spath.equationparametrizethecurve.AcurveinspacecanalsobewroteinThevectorvectorform.definesrasavectorfunctionoftherealvariabletontheintervalI.Moregenerally,avectorfunctionorvector-valuedfunctiononadomainsetDisarulethatassignsavectorinspacetoeachelementinD.41LimitsandContinuityDefinitionLimitandContinuity,thenIfinitsdomainifAvectorfunctioniscontinuousatapointThefunctioniscontinuousifitiscontinuousateverypointinitsdomain.ExamplethenSupposethat42DerivativesisdifferentiableifitisdifferentiableateverypointiscontinuousandThatisiff,gandhhavecontinuousfirstderivativesthatareAvectorfunctionDefinitionDerivativeataPoint

isdifferentiable

atThevectorfunctionThederivativeist

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論