




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
上海市虹口區(qū)復興高中2024屆高一上數(shù)學期末學業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,共60分)1.若,則a,b,c的大小關(guān)系是()A. B.C. D.2.()A.1 B.0C.-1 D.3.函數(shù)的零點所在的一個區(qū)間是A. B.C. D.4.函數(shù)對于定義域內(nèi)任意,下述四個結(jié)論中,①②③④其中正確的個數(shù)是()A.4 B.3C.2 D.15.入冬以來,霧霾天氣在部分地區(qū)頻發(fā),給人們的健康和出行造成嚴重的影響.經(jīng)研究發(fā)現(xiàn),工業(yè)廢氣等污染排放是霧霾形成和持續(xù)的重要因素,治理污染刻不容緩.為降低對空氣的污染,某工廠采購一套廢氣處理裝備,使工業(yè)生產(chǎn)產(chǎn)生的廢氣經(jīng)過過濾后再排放.已知過濾過程中廢氣的污染物數(shù)量P(單位:mg/L)與過濾時間t(單位:h)間的關(guān)系為(,k均為非零常數(shù),e為自然對數(shù)底數(shù)),其中為t=0時的污染物數(shù)量,若經(jīng)過3h處理,20%的污染物被過濾掉,則常數(shù)k的值為()A. B.C. D.6.函數(shù)與則函數(shù)所有零點的和為A.0 B.2C.4 D.87.關(guān)于的不等式的解集為,,,則關(guān)于的不等式的解集為()A. B.C. D.8.已知函數(shù)則其在區(qū)間上的大致圖象是()A. B.C. D.9.對于實數(shù)x,“0<x<1”是“x<2”的()條件A.充要 B.既不充分也不必要C.必要不充分 D.充分不必要10.給出下列命題:①函數(shù)為偶函數(shù);②函數(shù)在上單調(diào)遞增;③函數(shù)在區(qū)間上單調(diào)遞減;④函數(shù)與的圖像關(guān)于直線對稱.其中正確命題的個數(shù)是()A.1 B.2C.3 D.411.設是兩條不同的直線,是兩個不同的平面,且,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則12.已知,則的值為()A. B.C. D.二、填空題(本大題共4小題,共20分)13.若函數(shù)在單調(diào)遞增,則實數(shù)的取值范圍為________14.寫出一個最小正周期為2的奇函數(shù)________15.已知函數(shù),則函數(shù)的值域為______16.已知是定義在R上的周期為2的奇函數(shù),當時,,則___________.三、解答題(本大題共6小題,共70分)17.已知函數(shù)(1)證明:函數(shù)在區(qū)間上單調(diào)遞增;(2)已知,試比較三個數(shù)a,b,c的大小,并說明理由18.已知(1)化簡(2)若是第三象限角,且,求的值19.如圖,是正方形,直線底面,,是的中點.(1)證明:直線平面;(2)求直線與平面所成角的正切值.20.對于函數(shù),存在實數(shù),使成立,則稱為關(guān)于參數(shù)的不動點.(1)當時,凾數(shù)在上存在兩個關(guān)于參數(shù)的相異的不動點,試求參數(shù)的取值范圍;(2)對于任意的,總存在,使得函數(shù)有關(guān)于參數(shù)的兩個相異的不動點,試求的取值范圍.21.如圖,在正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點(Ⅰ)求證:平面AB1D1∥平面EFG;(Ⅱ)A1C⊥平面EFG22.定義在上的函數(shù)(且)為奇函數(shù)(1)求實數(shù)的值;(2)若函數(shù)的圖象經(jīng)過點,求使方程在有解的實數(shù)的取值范圍;(3)不等式對于任意的恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題(本大題共12小題,共60分)1、A【解析】根據(jù)題意,以及指數(shù)和對數(shù)的函數(shù)的單調(diào)性,來確定a,b,c的大小關(guān)系.【詳解】解:是增函數(shù),是增函數(shù).,又,【點睛】本題考查三個數(shù)的大小的求法,考查指數(shù)函數(shù)和對數(shù)函數(shù)性質(zhì)等基礎知識,考查運算求解能力,是基礎題.根據(jù)題意,構(gòu)造合適的對數(shù)函數(shù)和指數(shù)函數(shù),利用指數(shù)對數(shù)函數(shù)的單調(diào)性判定的范圍是關(guān)鍵.2、A【解析】用誘導公式化簡計算.【詳解】因為,所以,所以原式.故選:A.【點睛】本題考查誘導公式,考查特殊角的三角函數(shù)值.屬于基礎題.3、B【解析】根據(jù)函數(shù)的解析式,求得,結(jié)合零點的存在定理,即可求解,得到答案.【詳解】由題意,函數(shù),可得,即,根據(jù)零點的存在定理,可得函數(shù)的零點所在的一個區(qū)間是.故選:B.【點睛】本題主要考查了函數(shù)的零點問題,其中解答中熟記函數(shù)零點的存在定理,準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.4、B【解析】利用指數(shù)的運算性質(zhì)及指數(shù)函數(shù)的單調(diào)性依次判讀4個序號即可.【詳解】,①正確;,,②錯誤;,由,且得,故,③正確;由為減函數(shù),可得,④正確.故選:B.5、A【解析】由題意可得,從而得到常數(shù)k的值.【詳解】由題意可得,∴,即∴故選:A6、C【解析】分析:分別作與圖像,根據(jù)圖像以及對稱軸確定零點以及零點的和.詳解:分別作與圖像,如圖,則所有零點的和為,選C.點睛:對于方程解的個數(shù)(或函數(shù)零點個數(shù))問題,可利用函數(shù)的值域或最值,結(jié)合函數(shù)的單調(diào)性、草圖確定其中參數(shù)范圍.從圖象的最高點、最低點,分析函數(shù)的最值、極值;從圖象的對稱性,分析函數(shù)的奇偶性;從圖象的走向趨勢,分析函數(shù)的單調(diào)性、周期性等7、A【解析】根據(jù)題意可得1,是方程的兩根,從而得到的關(guān)系,然后再解不等式從而得到答案.【詳解】由題意可得,且1,是方程的兩根,為方程的根,,則不等式可化為,即,不等式的解集為故選:A8、D【解析】為奇函數(shù),去掉A,B;當時,所以選D.點睛:(1)運用函數(shù)性質(zhì)研究函數(shù)圖像時,先要正確理解和把握函數(shù)相關(guān)性質(zhì)本身的含義及其應用方向.(2)在運用函數(shù)性質(zhì)特別是奇偶性、周期、對稱性、單調(diào)性、最值、零點時,要注意用好其與條件的相互關(guān)系,結(jié)合特征進行等價轉(zhuǎn)化研究.如奇偶性可實現(xiàn)自變量正負轉(zhuǎn)化,周期可實現(xiàn)自變量大小轉(zhuǎn)化,單調(diào)性可實現(xiàn)去,即將函數(shù)值的大小轉(zhuǎn)化自變量大小關(guān)系9、D【解析】從充分性和必要性的定義,結(jié)合題意,即可容易判斷.【詳解】若,則一定有,故充分性滿足;若,不一定有,例如,滿足,但不滿足,故必要性不滿足;故“0<x<1”是“x<2”的充分不必要條件.故選:.10、C【解析】①函數(shù)為偶函數(shù),因為是正確的;②函數(shù)在上單調(diào)遞增,單調(diào)增是正確的;③函數(shù)是偶函數(shù),在區(qū)間上單調(diào)遞增,故選項不正確;④函數(shù)與互為反函數(shù),根據(jù)反函數(shù)的概念得到圖像關(guān)于對稱.是正確的.故答案為C.11、D【解析】若,則需使得平面內(nèi)有直線平行于直線;若,則需使得,由此為依據(jù)進行判斷即可【詳解】當時,可確定平面,當時,因為,所以,所以;當平面交平面于直線時,因為,所以,則,因為,所以,因為,所以,故A錯誤,D正確;當時,需使得,選項B、C中均缺少判斷條件,故B、C錯誤;故選:D【點睛】本題考查空間中直線、平面的平行關(guān)系與垂直關(guān)系的判定,考查空間想象能力12、C【解析】利用余弦的二倍角公式即可求解.【詳解】.故選:C.二、填空題(本大題共4小題,共20分)13、【解析】根據(jù)復合函數(shù)單調(diào)性性質(zhì)將問題轉(zhuǎn)化二次函數(shù)單調(diào)性問題,注意真數(shù)大于0.【詳解】令,則,因為為減函數(shù),所以在上單調(diào)遞增等價于在上單調(diào)遞減,且,即,解得.故答案為:14、【解析】根據(jù)奇函數(shù)性質(zhì)可考慮正弦型函數(shù),,再利用周期計算,選擇一個作答即可.【詳解】由最小正周期為2,可考慮三角函數(shù)中的正弦型函數(shù),,滿足,即是奇函數(shù);根據(jù)最小正周期,可得.故函數(shù)可以是中任一個,可取.故答案為:.15、【解析】先求的的單調(diào)性和值域,然后代入中求得函數(shù)的值域.【詳解】由于為上的增函數(shù),而,,即,對,由于為增函數(shù),故,即函數(shù)的值域為,也即.【點睛】本小題主要考查函數(shù)的單調(diào)性,考查函數(shù)的值域的求法,考查復合函數(shù)值域的求法.屬于中檔題.16、##【解析】根據(jù)函數(shù)的周期和奇偶性即可求得答案.【詳解】因為函數(shù)的周期為2的奇函數(shù),所以.故答案為:.三、解答題(本大題共6小題,共70分)17、(1)證明見解析(2)【解析】(1)根據(jù)函數(shù)單調(diào)性的定義即可證明;(2)先比較三個數(shù)的大小,再利用函數(shù)的單調(diào)性即可比較a,b,c的大小.【小問1詳解】證明:函數(shù),任取,且,則,因為,且,所以,,所以,即,所以函數(shù)在區(qū)間上單調(diào)遞增;【小問2詳解】解:由(1)可知函數(shù)在區(qū)間上單調(diào)遞增,因為,,,所以,所以,即.18、(1);(2).【解析】分析:(1)根據(jù)誘導公式化簡即得,(2)先根據(jù)誘導公式得,再根據(jù)平方關(guān)系求,即得的值.詳解:(1).(2)由,得:∵是第三象限角,∴則點睛:本題考查誘導公式以及同角三角函數(shù)關(guān)系,考查基本求解能力.19、(1)證明見解析;(2);【解析】(1)連接,由三角形中位線可證得,根據(jù)線面平行判定定理可證得結(jié)論;(2)根據(jù)線面角定義可知所求角為,且,由長度關(guān)系可求得結(jié)果.【詳解】(1)連接,交于,連接四邊形為正方形為中點,又為中點平面,平面平面(2)平面直線與平面所成角即為設,則【點睛】本題考查立體幾何中線面平行關(guān)系的證明、直線與平面所成角的求解;證明線面平行關(guān)系常采用兩種方法:(1)在平面中找到所證直線的平行線;(2)利用面面平行的性質(zhì)證得線面平行.20、(1)(2)【解析】(1)題目轉(zhuǎn)化為,根據(jù)雙勾函數(shù)的單調(diào)性得到函數(shù)值域,得到范圍.(2)根據(jù)得到,設,構(gòu)造函數(shù),根據(jù)函數(shù)的單調(diào)性得到函數(shù)的最大值,討論端點值的大小關(guān)系解不等式得到答案.【小問1詳解】,,即,,即,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,,,當時,,有兩個解,故.【小問2詳解】,即,,整理得到,故,設,,則,即,設,在上單調(diào)遞減,在上單調(diào)遞增,故,當,即或時,,解得或,故或;當,即時,,解得或,故;綜上所述:或,即21、(Ⅰ)見解析;(Ⅱ)見解析.【解析】(Ⅰ)連接,推導出四邊形是平行四邊形,從而.再證出,.從而平面,同理平面,由此能證明平面平面(Ⅱ)推導出,,從而平面,,同理,由此能證明平面AB1D1,從而平面【詳解】(Ⅰ)連接BC1,∵正方體ABCD-A1B1C1D1中,AB∥C1D1,AB=C1D1,∴四邊形ABC1D1是平行四邊形,∴AD1∥BC1.又∵E,G分別是BC,CC1的中點,∴EG∥BC1,∴EG∥AD1.又∵EG?平面AB1D1,AD1?平面AB1D1,∴EG∥平面AB1D1.同理EF∥平面AB1D1,且EG∩EF=E,EG?平面EFG,EF?平面EFG,∴平面AB1D1∥平面EFG.
(Ⅱ)∵AB1D1正方體ABCD-A1B1C1D1中,AB1⊥A1B.又∵正方體ABCD-A1B1C1D1中,BC⊥平面AA1B1B,∴AB1⊥BC.又∵A1B與BC都在平面A1BC中,A1B與BC相交于點B,∴AB1⊥平面A1BC,∴A1C⊥AB1同理A1C⊥AD1,而AB1與AD1都在平面AB1D1中,AB1與AD1相交于點A,∴A1C⊥平面AB1D1,因此,A1C⊥平面EFG【點睛】本題考查面面平行、線面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系,考查運算求解能力,考查空間思維能力,是中檔題22、(1)1(2)(3)答案見解析【解析】(1)根據(jù)題意可得,即可得解;(2)根據(jù)函數(shù)的圖象經(jīng)過點,可得函數(shù)經(jīng)過點,從而可求得,在求出函數(shù)在時的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年醫(yī)用氬氣系統(tǒng)合作協(xié)議書
- 金融行業(yè)高級管理經(jīng)歷證明書(7篇)
- 農(nóng)業(yè)種植土地流轉(zhuǎn)與利用協(xié)議
- 市政公共服務評價試題及答案
- 市政可持續(xù)政策框架試題及答案
- 2025技術(shù)許可合同標準范本
- 江西專版2024中考英語高分復習第一篇教材梳理篇課時訓練10Units1-2八下習題
- 2025商場租賃合同協(xié)議書樣本
- 2025保險公司航空貨物運輸保險合同
- 自考行政管理本科未來挑戰(zhàn)試題及答案
- 漆房外協(xié)協(xié)議書
- 2025年能源行業(yè)能源需求預測與市場發(fā)展趨勢2025
- 2024年“藍橋杯”科學素養(yǎng)競賽考試題庫(含答案)
- 康復醫(yī)療復習題及參考答案
- 破產(chǎn)法試題及答案
- 高血壓科普基礎知識培訓-2025世界高血壓日
- 憲法衛(wèi)士2023第八屆全國學生學憲法講憲法知識競賽題庫附答案(300題)
- 靜脈輸液不良反應及處理 課件
- 河南省開封市等2地2025屆高三第三次質(zhì)量檢測英語+答案
- 北師大版2025三年級語文下學期期中課堂知識檢測考試
- 2024年甘肅蘭州事業(yè)單位招聘考試真題答案解析
評論
0/150
提交評論